首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   2篇
大气科学   1篇
地球物理   10篇
地质学   11篇
海洋学   4篇
天文学   19篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
31.
To provide coastal engineers and scientists with a detailed inter-comparison of widely used parametric wave transformation models, several models are tested and calibrated with extensive observations from six field experiments on barred and unbarred beaches. Using previously calibrated (“default”) values of a free parameter γ, all models predict the observations reasonably well (median root-mean-square wave height errors are between 10% and 20%) at all field sites. Model errors can be reduced by roughly 50% by tuning γ for each data record. No tuned or default model provides the best predictions for all data records or at all experiments. Tuned γ differ for the different models and experiments, but in all cases γ increases as the hyperbolic tangent of the deep-water wave height, Ho. Data from two experiments are used to estimate empirical, universal curves for γ based on Ho. Using the new parameterization, all models have similar accuracy, and usually show increased skill relative to using default γ.  相似文献   
32.
A set of high‐fidelity simulated asteroid materials, or simulants, was developed based on the mineralogy of carbonaceous chondrite meteorites. Three varieties of simulant were developed based on CI1 chondrites (typified by Orgueil), CM2 chondrites (typified by Murchison), and CR2/3 chondrites (multiple samples). The simulants were designed to replicate the mineralogy and physical properties of the corresponding meteorites and anticipated asteroid surface materials as closely as is reasonably possible for bulk amounts. The simulants can be made in different physical forms ranging from larger cobbles to fine‐grained regolith. We analyzed simulant prototypes using scanning electron microscopy, X‐ray fluorescence, reflectance spectroscopy at ambient conditions and in vacuum, thermal emission spectroscopy in a simulated asteroid environment chamber, and combined thermogravimetry and evolved gas analysis. Most measured properties compare favorably to the reference meteorites and therefore to predicted volatile‐rich asteroid surface materials, including boulders, cobbles, and fine‐grained soils. However, there were also discrepancies, and mistakes were made in the original mineral formulations that will be updated in the future. The asteroid simulants are available to the community from the nonprofit Exolith Lab at UCF, and the mineral recipes are freely published for other groups to reproduce and modify as they see fit.  相似文献   
33.
We report all available measurements on strength of meteorites, primarily focusing on compressive and tensile strengths and supplementary data such as Young's modulus, Poisson's ratio, elastic sound wave velocities, density, porosity, and sample sizes. These data are solely taken from the original papers to avoid misprints and other issues. The data are provided as originally presented by the authors with the exception of standardization of units to the SI system. A brief overview of methods for each original work is also provided as a guide to “data quality” since individual papers go to varying levels of detail on their experimental setup and procedures. From this data set, we confirm that the compressive strength of ordinary chondrites (varying in the range of 10s to 100s of MPa) is about an order of magnitude larger compared to their tensile strength and the difference increases with iron content. For carbonaceous chondrites, the tensile strength seems to be about an order of magnitude below the tensile strength of ordinary chondrites and at least an order of magnitude below their compressive strength. We also provide a statistical relation between the strength of meteorites and their densities and porosities and discuss the role of strain rate and sample size on the resultant measured strength. Finally, the data do not provide sufficient statistics to support a size scale effect of strength of meteorites.  相似文献   
34.
This field study was conducted to examine whether the method or the flow rate (fill rate) used to fill a sample vial affects recovery of volatile organics (VOCs). To our knowledge, there have not been any systematic studies that have examined this issue. For this field study, three fill rates (50 mL/min, 250 mL/min, and ~1 L/min) and three filling methods (top‐pour, side‐pour, and bottom‐fill) were used to fill sample vials. We found that the bottom‐fill method, with the tubing submerged in the sample as it fills, yielded the greatest recovery (i.e., highest concentrations) of VOCs. Little improvement was observed by pouring down the side of a vial vs. simply pouring straight down from the top. We also found that filling the vials at the fastest fill rate (~1 L/min) yielded higher recovery than the slowest fill rate (50 mL/min) using all three filling methods. These results are counter to prevailing guidance and conventional wisdom that slower filling is preferable to faster filling and that pouring down the side of a sample vial is the best practice for VOC sampling. However, because we were unable to randomize the order the samples were collected with respect to fill rate, we recommend a follow‐on study be conducted that will allow us to confirm our findings and better determine which fill rates minimize losses of VOCs  相似文献   
35.
Diaz  John  Carnevale  Shannon  Millett  Cheryl  Abd-Elrahman  Amr  Britt  Katie 《Natural Hazards》2020,103(2):1905-1916
Natural Hazards - Natural ecosystems are characterized as dynamic systems that evolve through natural patterns of disturbance. Land managers can work within this system of natural disturbance by...  相似文献   
36.
Antarctic meteorite LAP 031047 is an ordinary chondrite composed of loosely consolidated chondritic fragments. Its petrography, oxygen isotopic composition and geochemical inventory are ambiguous and indicate an intermediate character between H and L chondrites. Petrographic indicators suggest LAP 031047 suffered a shock metamorphic overprint below ∼10 GPa, which did not destroy its unusually high porosity of ∼27 vol%. Metallographic textures in LAP 031047 indicate heating above ∼700 °C and subsequent cooling, which caused massive transformation of taenite to kamacite. The depletion of thermally labile trace elements, the crystallization of chondritic glass to microcrystalline plagioclase of unusual composition, and the occurrence of coarsely crystallized chondrule fragments is further evidence for post-metamorphic heating to ∼700-750 °C. However, this heating event had a transient character because olivine and low-Ca pyroxene did not equilibrate. Nearly complete degassing up to very high temperatures is indicated by the thorough resetting of LAP 031047’s Ar-Ar reservoir ∼100 ± 55 Ma ago. A noble gas cosmic-ray exposure age indicates it was reduced to a meter-size fragment at <0.5 Ma. In light of the fact that shock heating cannot account for the thermal history of LAP 031047 in its entirety, we test the hypothesis that this meteorite belonged to the near-surface of an Aten or Apollo asteroid that underwent heating during orbital passages close to the Sun.  相似文献   
37.
Abstract— Bulk and grain densities of 132 ordinary chondrites from the Vatican Observatory collection were measured and compared with their magnetic susceptibility (for the most part using previously measured values; ten new susceptibility measures were taken for this study). Grain density and magnetic susceptibility combined provide a reliable method of classifying unweathered ordinary chondrites. Unlike traditional chemical tests, this method is fast, nondestructive, and characterizes the whole rock, making it especially appropriate for surveying large collections. The system is less viable for finds; extensive weathering of metallic iron in an H chondrite can cause it to plot among L chondrites, while heavily weathered L chondrites plot among the LL group. This system has revealed outlier stones that may be misclassified meteorites or mislabeled samples; in every case where the magnetic susceptibility of a meteorite does not fit its putative classification, the grain density is also found to be in disagreement in a manner consistent with either severe weathering or misidentification. An analysis of stones from five showers shows that, excluding outliers, these samples tend to cluster tightly within their appropriate groups in a plot of grain versus magnetic susceptibility.  相似文献   
38.
The flyby of the nucleus of the Comet 19P/Borrelly by the Deep Space 1 spacecraft produced the best views to date of the surface of these interesting objects. It transformed Borrelly from an astronomical object shrouded in coma of gas and dust into a geological object with complex surface processes and a rich history of erosion and landform evolution. Based on analysis of the highest resolution images, stereo images, photometry, and albedo we have mapped four major morphological units and four terrain features. The morphological units are named dark spots, mottled terrain, mesas, and smooth terrain. The features are named ridges, troughs, pits, and hills. In strong contrast to asteroids, unambiguous impact craters were not observed on Borrelly's surface. Because of the relatively short period of this comet, surface erosion by volatile sublimation is, in geologic terms, a very active process. The formation and the morphologies of units and features appear to be driven by differential rates of sublimation erosion. Erosional rates across the comet are probably controlled by solar energy input and the location of the subsolar point during perihelion. Differences in energy input may produce different varieties of sublimation erosional landforms. The terrains on Borrelly suggest that solar energy input could map directly into erosional processes and landforms.  相似文献   
39.
The Archimedean glass bead method for determining meteorite bulk density has become widely applied. We used well characterized, zero-porosity quartz and topaz samples to determine the systematic error in the glass bead method to support bulk density measurements of meteorites for our ongoing meteorite survey. Systematic error varies according to bead size, container size and settling method, but in all cases is less than 3%, and generally less than 2%. While measurements using larger containers (above 150 cm3) exhibit no discernible systematic error but much reduced precision, higher precision measurements with smaller containers do exhibit systematic error. For a 77 cm3 container using 40-80 μm diameter beads, the systematic error is effectively eliminated within measurement uncertainties when a “secured shake” settling method is employed in which the container is held securely to the shake platform during a 5 s period of vigorous shaking. For larger 700-800 μm diameter beads using the same method, bulk volumes are uniformly overestimated by 2%. Other settling methods exhibit sample-volume-dependent biases. For all methods, reliability of measurement is severely reduced for samples below ∼5 cm3 (10-15 g for typical meteorites), providing a lower-limit selection criterion for measurement of meteoritical samples.  相似文献   
40.
Abstract— We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high‐resolution synchrotron X‐ray microtomography (μCT) and helium pycnometry. We found total porosities ranging from ~10 to 20% within these chondrites, and with μCT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1‐S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not “fluffed” on their parent body by impact‐related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号