首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地质学   5篇
天文学   16篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2010年   1篇
  2009年   5篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   4篇
  1997年   5篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
11.
Interferometric observations are essential to probe the molecular emission in the inner cometary atmospheres and study the outgassing from the nucleus. Mapping the continuum emission can provide information about the dust and/or nucleus properties. We present here a summary of the observations of the dust and gas coma of comet 17P/Holmes and nuclear observations of 8P/Tuttle, both carried out with the IRAM interferometer at Plateau de Bure (PdBI) in 2007–2008. The observations of these two comets demonstrate the ability of the PdBI in terms of cometary science. In the near future, several improvements will be made (new receivers at 0.8 mm, a new wide-band correlator) allowing more frequent and more detailed studies of comets. On the long term, NOEMA, an expansion project, may add up to six antennas to the Plateau de Bure Interferometer, and increase the baseline lengths. Such an instrument would offer a complement to ALMA to track comets of the northern hemisphere with about half the sensitivity of ALMA for continuum studies.  相似文献   
12.
NASA's Deep Space 1 mission flew by Comet 19P/Borrelly on September 22, 2001.We present observations of molecular species obtained with the 30-m telescope of theInstitut de Radioastronomie Millimétrique (IRAM) and the Nançay radio telescopeat and near the time of this flyby. OH, HCN, and CS production rates were measured,while upper limits were deduced for CO, H2CO and H2S.  相似文献   
13.
Biver  N.  Bockelée-Morvan  D.  Colom  P.  Crovisier  J.  Germain  B.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Moreno  R.  Paubert  G.  Wink  J.  Despois  D.  Lis  D. C.  Mehringer  D.  Benford  D.  Gardner  M.  Phillips  T. G.  Gunnarsson  M.  Rickman  H.  Winnberg  A.  Bergman  P.  Johansson  L. E. B.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):5-11
C/1995 O1 (Hale-Bopp) has been observed on a regular basis since August 1995 at millimetre and submillimetre wavelengths using IRAM, JCMT, CSO and SEST radio telescopes. The production rates of eight molecular species (CO, HCN, CH3OH, H2CO,H2S, CS, CH3CN,HNC) have been monitored as a function of heliocentric distance(rh from 7 AU pre-perihelion to 4 AU post-perihelion. As comet Hale-Bopp approached and receded from the Sun, these species displayed different behaviours. Far from the Sun, the most volatile species were found in general relatively more abundant in the coma. In comparison to other species, HNC, H2CO and CS showed a much steeper increase of the production rate with decreasing rh. Less than 1.5 AU from the Sun, the relative abundances were fairly stable and approached those found in other comets near 1 AU. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about10 K at 7 AU to 110 K around perihelion. The expansion velocity of the gaseous species, derived from the line shapes, also increased with a law close torh 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
14.
A voltammetric method for the determination of the high field‐strength elements Ti, Zr, Hf, Nb and Ta by adsorptive stripping of their tartrate complexes is presented. The applicability of the method to geological and metallurgical samples is illustrated by the analysis of certified reference materials (USGS BCR‐2 basalt, BCS‐CRM 388 zircon and Euronorm CRM 579‐1 ferroniobium). Suitable sample preparation techniques, involving fusion with LiBO2 and acidic and basic fluxes, followed by preliminary separation by anion chromatography are described. The method is rapid, affordable and environmentally friendly as it does not require problematic compounds such as hydrofluoric acid or toxic solvents and represents an alternative to more commonly used methods (AAS, ICP‐OES, ICP‐MS).  相似文献   
15.
The bright comet Hale–Bopp provided the first opportunity to follow the outgassing rates of a number of molecular species over a large range of heliocentric distances. We present the results of our observing campaign at radio wavelengths which began in August 1995 and ended in January 2002. The observations were carried out with the telescopes of Nançay, IRAM, JCMT, CSO and, since September 1997, SEST. The lines of nine molecules (OH, CO, HCN, CH3OH, H2CO, H2S, CS, CH3CN and HNC) were monitored. CS, H2S, H2CO, CH3CN were detected up to rh= 3–4 AU from the Sun, while HCN and CH3OH were detected up to 6 AU. CO, which is the main driver of cometary activity at heliocentric distances larger than 3–4 AU, was last detected in August 2001, at rh= 14 AU. The gas production rates obtained from this programme contain important information on the nature of cometary ices, their thermal properties and sublimation mechanisms.Line shapes allow to measure gas expansion velocities, which, at large heliocentric distances, might be directly connected to the temperature of the nucleus surface. Inferred expansion velocity of the gas varied as rh -0.4 within 7 AU from the Sun, but remained close to 0.4 km s-1 further away. The CO spectra obtained at large rhare strongly blueshifted and indicative of an important day-to-night asymmetry in outgassing and expansion velocity. The kinetic temperature of the coma, estimated from the relative intensities of the CH3OH and CO lines, increased with decreasing rh, from about 10 K at 7 AU to 110 K around perihelion.  相似文献   
16.
Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us: (i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); (ii) to investigate the chemical composition of comets; (iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei.Comets are classified from their orbital characteristics into two separate classes: (i) nearly isotropic, mainly long-period comets and (ii) ecliptic, short-period comets, the so-called Jupiter-family comets (JFCs). These two classes apparently come from two different reservoirs, respectively, the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and—possibly—their different origin, they may have different chemical and physical properties that are worth being investigated.The present article reviews the contribution of radio observations to our knowledge of the JFCs. The difficulty of such a study is the commonly low gas and dust productions of these comets. Long-period, nearly isotropic comets from the Oort cloud are better known from Earth-based observations. On the other hand, JFCs are more easily accessed by space missions. However, unique opportunities to observe JFCs are offered when these objects come by chance close to the Earth (like 73P/Schwassmann-Wachmann 3 in 2006), or when they exhibit unexpected outbursts (as did 17P/Holmes in 2007).About a dozen JFCs were successfully observed by radio techniques up to now. Four to ten molecules were detected in five of them. No obvious evidence for different properties between JFCs and other families of comets is found, as far as radio observations are concerned.  相似文献   
17.
A fundamental question in cometary science is whether the different dynamical classes of comets have different chemical compositions, which would reflect different initial conditions. From the ground or Earth orbit, radio and infrared spectroscopic observations of a now significant sample of comets indeed reveal deep differences in the relative abundances of cometary ices. However, no obvious correlation with dynamical classes is found. Further results come, or are expected, from space exploration. Such investigations, by nature limited to a small number of objects, are unfortunately focussed on short-period comets (mainly Jupiter-family). But these in situ studies provide “ground truth” for remote sensing. We discuss the chemical differences in comets from our database of spectroscopic radio observations, which has been recently enriched by several Jupiter-family and Halley-type comets.  相似文献   
18.
Wink  J.  Bockelée-Morvan  D.  Despois  D.  Colom  P.  Biver  N.  Crovisier  J.  Gérard  E.  Lellouch  E.  Davies  J. K.  Dent  W. R. F.  Jorda  L. 《Earth, Moon, and Planets》1997,78(1-3):63-63
Comet C/1995 O1 (Hale-Bopp) has been observed on October 5 and 25, 1996 and from March 6 to March 22, 1997 with the Institut de Radioastronomie Millimétrique (IRAM) interferometer at Plateau de Bure (France). Millimetre lines of HCN,HNC, CO, H2CO, CH3OH, H2S, CS and SO were mapped with spatial resolutions of 1.5–3.5 arc sec. These observations allow us to investigate whether these species are released by the nucleus or produced in the coma by extended sources or photo-processes. The brightness distribution of the HCN J (1-0) line is consistent with release from the nucleus. The HNC J (1-0) distribution deviates from that of HCN in the innermost coma, and indicates production of HNC in the coma. This is in agreement with the heliocentric variation of the HNC/HCN ratio (Biver et al., 1997, Science 275, 1915; Irvine et al., 1998, this issue) and formation by chemical reactions (Rodgers and Charnley, 1998, Ap. J. 501, L227; Irvine et al., 1998, Nature 393, 547). There is clear evidence that SO is a photo dissociation product. The observations also confirm that H2CO is mainly produced by an extended source, as first evidenced in comet P/Halley. The contribution of the nucleus to the total H2CO production rate does not exceed 6%. The molecular lines have also been monitored hourly with the five antennas of the interferometer in single-dish mode. The line velocity shifts show aperiodic modulation linked to the nucleus rotation. The amplitude of the modulation differs from one species to another. The periodic modulation seen for the CO J (2-1) line on March 11 suggests that a significant fraction of CO is released continuously night and day by an active source situated at equatorial latitudes on the nucleus surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
19.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
20.
Based on long-slit infrared spectroscopic observations, it has been suggested that half of the carbon monoxide present in the atmosphere of Comet C/1995 O1 (Hale-Bopp) close to perihelion was released by a distributed source in the coma, whose nature (dust or gas) remains unidentified. We re-assess the origin of CO in Hale-Bopp’s coma from millimeter interferometric data and a re-analysis of the IR lines.Simultaneous observations of the CO J(1–0) (115 GHz) and J(2–1) (230 GHz) lines were undertaken with the IRAM Plateau de Bure interferometer in single-dish and interferometric modes. The diversity of angular resolutions (from 1700 to 42,000 km diameter at the comet) is suitable to study the radial distribution of CO and detect the extended source observed in the infrared. We used excitation and radiative transfer models to simulate the single-dish and interferometric data. Various CO density distributions were considered, including 3D time-dependent hydrodynamical simulations which reproduce temporal variations caused by the presence of a CO rotating jet. The CO J(1–0) and J(2–1) observations can be consistently explained by a nuclear production of CO. Composite 50:50 nuclear/extended productions with characteristic scale lengths of CO parent Lp > 1500 km are rejected.Based on similar radiation transfer calculations, we show that the CO v = 1–0 ro-vibrational lines observed in Comet Hale-Bopp at heliocentric distances less than 1.5 AU are severely optically thick. The broad extent of the CO brightness distribution in the infrared is mainly due to optical depth effects entering in the emitted radiation. Additional factors can be found in the complex structure of the CO coma, and non-ideal slit positioning caused by the anisotropy of dust IR emission.We conclude that both CO millimeter and infrared lines do not provide compelling evidence for a distributed source of CO in Hale-Bopp’s atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号