首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1800篇
  免费   71篇
  国内免费   4篇
测绘学   79篇
大气科学   300篇
地球物理   437篇
地质学   658篇
海洋学   51篇
天文学   261篇
综合类   3篇
自然地理   86篇
  2021年   27篇
  2020年   26篇
  2019年   17篇
  2018年   56篇
  2017年   65篇
  2016年   82篇
  2015年   67篇
  2014年   80篇
  2013年   127篇
  2012年   62篇
  2011年   52篇
  2010年   73篇
  2009年   81篇
  2008年   46篇
  2007年   60篇
  2006年   56篇
  2005年   37篇
  2004年   19篇
  2003年   41篇
  2002年   34篇
  2001年   35篇
  2000年   33篇
  1999年   24篇
  1998年   23篇
  1997年   39篇
  1996年   27篇
  1995年   31篇
  1994年   27篇
  1993年   18篇
  1992年   13篇
  1991年   23篇
  1990年   18篇
  1988年   14篇
  1987年   17篇
  1984年   18篇
  1983年   27篇
  1982年   15篇
  1981年   15篇
  1980年   15篇
  1979年   15篇
  1978年   20篇
  1976年   16篇
  1975年   15篇
  1974年   19篇
  1973年   20篇
  1972年   14篇
  1971年   12篇
  1970年   12篇
  1968年   12篇
  1965年   14篇
排序方式: 共有1875条查询结果,搜索用时 15 毫秒
31.
32.
33.
34.
In Italy, the horizontal stress directions are well constrained in many regions, but the tectonic regime is not well known because the stress magnitudes are unknown. Our intention is to improve the knowledge of crustal stress in Italy, both at shallow depth and in low seismicity areas. Therefore, we inferred the tectonic regime from the comparison between the depth of breakout occurrence and the physical properties of the rocks in 20 boreholes. The critical value of the maximum horizontal stress, for which the effective tangential stress at the borehole wall overcomes the rock strength to form breakouts, could be computed from rock strength and density. Comparing the theoretical stress distributions for different tectonic regimes with the depth distribution of breakout occurrence, it is possible to infer the tectonic regime that fits best to the breakout depth distribution. We investigated boreholes up to 6 km deep located in different tectonic environments over the Italian peninsula: the Po Plain, the Apenninic chain, the Adriatic foredeep and the Tyrrhenian Quaternary volcanic region. These wells are characterised by breakout data of good quality (A, B and C, according to World Stress Map quality ranking system). The results are in general agreement with the style of faulting derived from earthquake focal mechanisms and other stress indicators. Our results show a predominance of a normal faulting (NF) regime in the inner Apennines and both normal faulting and strike–slip faulting (SS) style in the surrounding regions, possibly also associated with changes in the tectonic regime with depth.  相似文献   
35.
Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4–80% for different 30–50 days long air parcel trajectories, the mean scatter of model results around these values is only about ±1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about ±7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation.  相似文献   
36.
Meso-gamma scale forecasts using the nonhydrostatic model LM   总被引:10,自引:0,他引:10  
Summary ?The nonhydrostatic model LM was developed for small scale operational predictions. Advances in computer development will give the possibility of operational models of a rather fine scale, which will cover the meso-gamma scale. The LM is currently applied at a scale of 7 km and an increase of the operational resolution to 2.5 km is planned for the next few years. Predictions of such high resolution require to abandon the hydrostatic assumption, which is used with most current operational weather prediction models. The LM was designed to cover all resolutions from 50 m to 50 km with an efficiency making it suitable for operational use. It is a fully elastic model, using second order centred finite differences. The time integration is done using the Klemp–Wilhelmson method, treating the slow modes by a larger time step than the fast modes. The vertical propagation of the fast waves is done implicitly. After describing the design of the LM, this paper gives examples of model predictions at the meso-γ scale. Some results of the current operational application at the resolution 7 km are presented. Deficiencies in the localisation of model generated precipitation are investigated using an idealised bell shaped mountain and applying different resolutions. In this way the convergence to the correct solution can be investigated. From these results it is concluded, that orographic filtering is necessary and the effect of such filtering on precipitation forecasts is investigated. Finally, the prediction of a squall line over northern Germany is shown in order to demonstrate the potential of the model in forecasting the meso-γ scale. Received May 15, 2001; revised September 21, 2001  相似文献   
37.
The Eder unit in the Carnic Alps, which is situated immediately south of the Periadriatic lineament (PL), represents a fault-bounded block consisting of a low-grade (up to 400?°C, indicated by epizonal illite “crystallinity” values, recrystallized quartz, and non-recrystallized white mica) metamorphic Paleozoic metasedimentary sequence. Until now, it has been assumed to represent a separate Variscan nappe. The rocks of the Eder unit show a strong E- to W-oriented stretching lineation on steep foliation planes (D1) subparallel to the PL. D1 structures originated near the temperature peak of metamorphism, and shear sense indicators show dextral ductile shear parallel to the PL. Tight mesoscale D2 folds formed on the cooling path. K–Ar and Ar–Ar ages from newly formed white mica cluster around 32–28 and 18–13 Ma and suggest a two-stage Tertiary history of the Eder unit. We interpret the Eder unit as a fault-bounded block formed during Oligocene large-scale dextral shearing along the PL (near Tmax) and exhumed in mid-Miocene times during another phase of activity along the PL. Its nature as a separate Variscan nappe is questioned.  相似文献   
38.
39.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   
40.
The Silurian of Gotland, Sweden, consists of 440 m of carbonate deposits. Repeatedly, uniform sequences of micritic limestones and marls are interrupted by complex-structured reefs and by adjacent platform sediments. Generally, the alteration of facies is interpreted as the result of sea-level fluctuations caused by a gradual regression with superimposed minor transgressive pulses. The purpose of this study is a facies interpretation based on both field observations and stable isotope measurements of brachiopod shells. Approximately 700 samples from stratigraphically arranged localities in different facies areas have been investigated. The carbon and oxygen isotopes show principally parallel curves and a close relationship to the stratigraphic sequence. Lower values occur in periods dominated by deposition of marly sequences. Higher values are observed in periods dominated by reefs and extended carbonate platforms. The oxygen isotope ratios are interpreted to reflect paleosalinity changes due to varying freshwater input, rather than to paleotemperature. Carbon isotope ratios are believed to have been connected to global changes in the burial of organic carbon in black shales during periods of euxinic deep water conditions. Consequently, the facies succession on Gotland results from global paleoclimatic conditions. Changes in terrigenous input due to different rates of weathering and freshwater runoff, rather than sea-level fluctuations, control the carbonate formation of the Silurian on Gotland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号