首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   9篇
  国内免费   3篇
测绘学   16篇
大气科学   12篇
地球物理   78篇
地质学   182篇
海洋学   17篇
天文学   31篇
自然地理   24篇
  2022年   2篇
  2021年   7篇
  2020年   2篇
  2019年   10篇
  2018年   7篇
  2017年   14篇
  2016年   16篇
  2015年   14篇
  2014年   11篇
  2013年   12篇
  2012年   14篇
  2011年   24篇
  2010年   15篇
  2009年   17篇
  2008年   20篇
  2007年   21篇
  2006年   21篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   8篇
  2001年   10篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   13篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1967年   1篇
  1964年   2篇
  1960年   1篇
  1952年   1篇
  1949年   1篇
排序方式: 共有360条查询结果,搜索用时 15 毫秒
351.
The different algorithms appropriate for point source photometry on data from the SPIRE instrument on-board the Herschel Space Observatory, within the Herschel Interactive Processing Environment (HIPE) are compared. Point source photometry of a large ensemble of standard calibration stars and dark sky observations is carried out using the 4 major methods within HIPE: SUSSEXtractor, DAOphot, the SPIRE Timeline Fitter and simple Aperture Photometry. Colour corrections and effective beam areas as a function of the assumed source spectral index are also included to produce a large number of photometric measurements per individual target, in each of the 3 SPIRE bands (250, 350, 500μm), to examine both the accuracy and repeatability of each of the 4 algorithms. It is concluded that for flux densities down to the level of 30mJy that the SPIRE Timeline Fitter is the method of choice. However, at least in the 250 and 350μm bands, all 4 methods provide photometric repeatability better than a few percent down to at approximately 100mJy. The DAOphot method appears in many cases to have a systematic offset of ~8 % in all SPIRE bands which may be indicative of a sub-optimal aperture correction. In general, aperture photometry is the least reliable method, i.e. largest scatter between observations, especially in the longest wavelength band. At the faintest fluxes, <30mJy, SUSSEXtractor or DAOphot provide a better alternative to the Timeline Fitter.  相似文献   
352.
Most airborne and terrestrial laser scanning systems additionally record the received signal intensity for each measurement. Multiple studies show the potential of this intensity value for a great variety of applications (e.g. strip adjustment, forestry, glaciology), but also state problems if using the original recorded values. Three main factors, a) spherical loss, b) topographic and c) atmospheric effects, influence the backscatter of the emitted laser power, which leads to a noticeably heterogeneous representation of the received power. This paper describes two different methods for correcting the laser scanning intensity data for these known influences resulting in a value proportional to the reflectance of the scanned surface. The first approach – data-driven correction – uses predefined homogeneous areas to empirically estimate the best parameters (least-squares adjustment) for a given global correction function accounting for all range-dependent influences. The second approach – model-driven correction – corrects each intensity independently based on the physical principle of radar systems. The evaluation of both methods, based on homogeneous reflecting areas acquired at different heights in different missions, indicates a clear reduction of intensity variation, to 1/3.5 of the original variation, and offsets between flight strips to 1/10. The presented correction methods establish a great potential for laser scanning intensity to be used for surface classification and multi-temporal analyses.  相似文献   
353.
Based on high-resolution (sub)glacial geomorphological mapping, we present a first digital inventory of streamlined bedforms within the footprint of a Last Glacial Maximum (LGM) Alpine piedmont glacier. A total of 2460 drumlins were mapped across the Rhine glacier foreland. Glacial lineations and one field of subglacial ribs (ribbed/Rogen moraines) — the first record of this type of subglacial landform on the Alpine foreland—were identified. Two flowsets, associated with (i) the Rhine glacier's LGM maximum advance (Schaffhausen stadial) and (ii) a late LGM readvance (Stein am Rhein stadial), are differentiated. The vast majority of streamlined bedforms occur in fields aligned in a 16- to 30-km-wide swath upstream of the Stein am Rhein frontal moraines. Orientation and elongation of drumlins and glacial lineations set the basis for the reconstruction of paleo-ice flow. Basal flow paths of the LGM maximum advance are visually interpreted and restricted to the zone proximal to the former ice front. The flow field reconstructed for the late LGM glacier readvance (Stein am Rhein stadial) extends tens of kilometres upstream and is modelled implementing a recently published kriging routine. The derived basal flow patterns paired with information on ice surface levels from lateral and frontal moraines and combined with relative ice velocity differences inferred from spatial changes in bedform elongation reveal detailed insights on ice flow geometries, particularly during the glacier readvance. Reconstructed flowlines highlight basal flow under shallow ice that is strongly controlled by local topography evidenced by diverging around basal bumps and converging in (narrow) valley sections and troughs, where basal flow velocities, steered by topography, are high. Gained paleo-ice basal flow patterns offer new insights on landscape evolution of the northern Alpine foreland and provide evidence-based flow data to validate future physical modelling results.  相似文献   
354.
An overview of the many topics discussed at IAU Colloquium No. 104 is presented as an introduction to the Proceedings. Suggested areas for future research emerging from the conference are summarized.  相似文献   
355.
356.
357.
The Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) on board the ESA Herschel Space Observatory has two detector setting modes: (a) a nominal mode, which is optimized for observing moderately bright to faint astronomical targets, and (b) a bright-source mode recommended for sources significantly brighter than 500 Jy, within the SPIRE FTS bandwidth of 446.7–1544 GHz (or 194–671 microns in wavelength), which employs a reduced detector responsivity and out-of-phase analog signal amplifier/demodulator. We address in detail the calibration issues unique to the bright-source mode, describe the integration of the bright-mode data processing into the existing pipeline for the nominal mode, and show that the flux calibration accuracy of the bright-source mode is generally within 2 % of that of the nominal mode, and that the bright-source mode is 3 to 4 times less sensitive than the nominal mode.  相似文献   
358.
359.
Resonant and near-resonant sway-induced sloshing flow in a rectangular container is used to compare various combinations of compressibility models for air and water. The numerical model is implemented in a commercial RANS computational fluid dynamics (CFD) code. A criterion based on wave propagation is developed to assess the importance of including fluid compressibility. For sloshing flows with low levels of fluid impact, this can be simulated with incompressible fluid models for both air and water. When modelling sloshing at low-filling levels with a travelling wave, which generates large air bubble entrainment, the choice of fluid compressibility model is shown to have a significant influence on pressure magnitude and frequency of oscillation required for structural assessment. Further comparisons with theoretical models show that a full thermal energy compressibility model is also required.  相似文献   
360.
Heat-treatment and stepwise cooling of as-delivered, water-containing quartz-type GeO2 powder resulted in transformation into a water-free form. A rutile-type modification could be prepared by impregnation of the quartz-type phase with RbOH solutions, drying and annealing. Raman- and FTIR-absorption spectra of quartz- and rutile-type GeO2 were measured and compared to quantum-mechanical ab initio calculations based on a hybrid functional using the Perdew–Burke–Ernzerhof correlation functional with 16.7% Hartree–Fock exchange density functional. Maximum and mean deviations between measured spectral bands and assigned vibrational modes are 14 and ±8 cm−1 for the quartz-type and 30 and ±13 cm−1 for the rutile-type polymorphic form. Water is incorporated into GeO4 entities of quartz-type GeO2; a water-free and structurally stable form can be prepared by a heating up to 1,425 K, tempering at 1,323 K and stepwise cooling. Spectral bands not explained by the calculations suggest defects and distortions in both quartz- and rutile-type structures, in case of the quartz-type one by incomplete transformation into an ideal structure after removing the water, whereas the rutile-type modification most probably incorporates Rb during its synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号