首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   10篇
  国内免费   6篇
测绘学   16篇
大气科学   14篇
地球物理   72篇
地质学   216篇
海洋学   18篇
天文学   24篇
综合类   1篇
自然地理   34篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   12篇
  2018年   14篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   16篇
  2013年   19篇
  2012年   20篇
  2011年   23篇
  2010年   28篇
  2009年   32篇
  2008年   29篇
  2007年   18篇
  2006年   22篇
  2005年   6篇
  2004年   13篇
  2003年   4篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
排序方式: 共有395条查询结果,搜索用时 15 毫秒
91.
We analysed aftershocks recorded by a temporary digital seismic network following the moderate M w = 5.5 1993, Scotts Mills, Oregon, earthquake. A technique to retrieve source moment tensors from local waveforms was developed, tested, and applied to 41 small earthquakes ( M w ranging from 1.6 to 3.2). The derived focal mechanisms, although well resolved, are highly variable and do not share a common nodal plane. In contrast, the majority of the events, relocated with a joint hypocentre determination algorithm, collapse to a well-focused plane. The incompatibility of the nodal planes of most events with the plane defined by their locations suggests that the aftershocks did not occur on the fault plane, but tightly around it, outlining the rupture area rather than defining it. Furthermore, the moment tensors reveal stable P -axes, whereas T  -axes plunges are highly dispersed. We detect a rotation of average T  -axis plunge with depth, indicating a change from shallower, predominantly dip-slip mechanisms to deeper strike-slip mechanisms. These characteristics are difficult to explain by remnant stress concentrations on the main-shock rupture plane or asperity- and barrier-type models. We suggest that the aftershocks occurred under the ambient regional stress, triggered by a sudden weakening of the region surrounding the main-shock slip, rather than from a shear stress increase due to the main shock.  相似文献   
92.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
93.
Saturn's moon Titan has been considered as one of the few places in our Solar System, where atmospheric and surface conditions could have produced organic compounds essential as precursors for an evolution of life. The Cassini-Huygens mission has provided new data on Titan's atmosphere and surface, which enabled us to simulate the chemical processes occurring under these conditions. Possible lightning events on Titan cannot only produce higher hydrocarbons, but also allow surface water ice to participate in the reaction scenario, resulting in CHO, CHN, and CHON compounds including several molecules relevant for the formation of amino acids and nucleic acids.  相似文献   
94.
The relationship between stable isotope composition (δ13C and δ18O) in seawater and in larval shell aragonite of the sea scallop, Placopecten magellanicus, was investigated in a controlled experiment to determine whether isotopes in larval shell aragonite can be used as a reliable proxy for environmental conditions. The linear relationship between δ13CDIC and δ13Caragonite (r2 = 0.97, p < 0.0001, RMSE = 0.18) was:
δ13CDIC=1.15(±0.05)∗δ13Caragonite-0.85(±0.04)  相似文献   
95.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   
96.
In this study, we use a combined biomarker and macrofossil approach to reconstruct the Holocene climate history recorded in Trifna Sø, Skallingen area, eastern North Greenland. Chronological information is derived from comparison of lithological, biogeochemical and macrofossil characteristics with a well‐dated record from nearby Lille Sneha Sø. Following local deglaciation around c. 8 cal. ka BP, the local peak warmth occurred between c. 7.4 and 6.2 cal. ka BP as indicated by maximum macrofossil abundances of warmth‐demanding plants (Salix arctica and Dryas integrifolia) and invertebrates (Daphnia pulex and Chironomidae). Warm conditions were dominated by terrestrial organic matter (OM) sedimentation as implied by the alkane‐based Paq ratio, but increased aquatic productivity is indicated when temperature was highest around 6.5 cal. ka BP. The n‐C29/n‐C31 alkane ratio shows that vegetation in the catchment was dominated by shrubs after deglaciation, but shifted towards relatively more grassy/herbaceous vegetation during peak warmth. After 5.4 cal. ka BP, the disappearance of warmth‐demanding plant and invertebrate macrofossils indicates cooling in the Skallingen area. This cooling was characterized by a significant shift towards dominance of aquatic OM sedimentation in Trifna Sø as implied by high Paq ratios. Cooling was also associated with a shift in vegetation type from dwarf‐shrub heaths towards relatively more herbaceous vegetation in the catchment, stronger erosion and more oligotrophic conditions in the lake. Our data show that mean air temperatures inferred using branched glycerol dialkyl glycerol tetraethers (brGDGTs) do not seem to accurately reflect the local climatic history. Irrespective of calibration, methylation of branched tetraethers (MBT) palaeothermometry cannot be reconciled with the macrofossil evidence and seems to be biased by either changing brGDGT sources (in situ vs. soil‐derived) or changing species assemblages and/or an unknown physiological response to changing environmental conditions at high latitude.  相似文献   
97.
98.
Tourmaline synthesised in an experiment with low boron excess was analysed in situ by secondary ion mass spectrometry. It revealed significant B isotope zonation with 11B/10B ratios increasing in the growth direction of the crystals. Trend, magnitude and absolute values strongly support results from high-B-excess isotope fractionation experiments. Furthermore, the closed system B-isotopic evolution of the experimental fluid was modelled by Rayleigh fractionation. The model results are in excellent agreement with the measured B-isotope composition of the run-product fluid. Consequently, low-element-excess experiments are proposed as an ideal approach to determine fluid-solid isotope fractionation factors for systems that are characterised by Rayleigh fractionation.  相似文献   
99.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   
100.
Using numerical modelling, we investigate the evolution of seismoelectric effects induced by seismic excitation in spatially confined lithological units. Typical geometries represent clay lenses embedded in an aquifer or petroleum deposits in a host rock. In fluid‐saturated rocks, seismic waves can generate electromagnetic fields due to electrokinetic coupling mechanisms associated with such processes in the vicinity of the fluid‐mineral interface. Two seismoelectric phenomena are investigated: (1) the co‐seismic field associated with the seismic displacement at each point in a subsurface and (2) the interface response generated at layer boundaries. Our modelling uses a simplified time‐domain formulation of the coupled problem and an efficient 2D finite‐element implementation. To gain insight into the morphogenetic field behaviour of the seismoelectric effects, several numerical simulations for various target geometries were treated. Accordingly, we varied both the thickness of the confined units and the value of the electrical bulk conductivity in porous media. Analysis of these effects shows differences between interface responses for electrically conductive versus resistive units. So the pertinent contrast in electrical bulk conductivity controls the shape and structure of these seismoelectric conversion patterns. Moreover, the seismoelectric interface response captures both the petrophysical and geometrical characteristics of the geological unit. These models demonstrate the value of using seismoelectric interface response for reservoir characterization in either hydrogeological or hydrocarbon exploration studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号