首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   10篇
  国内免费   6篇
测绘学   16篇
大气科学   14篇
地球物理   72篇
地质学   216篇
海洋学   18篇
天文学   24篇
综合类   1篇
自然地理   34篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   12篇
  2018年   14篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   16篇
  2013年   19篇
  2012年   20篇
  2011年   23篇
  2010年   28篇
  2009年   32篇
  2008年   29篇
  2007年   18篇
  2006年   22篇
  2005年   6篇
  2004年   13篇
  2003年   4篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
排序方式: 共有395条查询结果,搜索用时 15 毫秒
51.
Cyclic diterpenoid compounds have been found by various investigators in the geosphere (e.g. fossil resins, coals, soil, shale and deep-sea sediments). These compounds occur in significant amounts only in higher plants and are therefore potential markers of terrigenous plant lipids.Diterpenoids with the abietane skeleton (mainly dehydroabietic acid) have been identified in the lipids of sediment samples from the northeast Pacific Ocean, Black Sea and North Atlantic Ocean. The presence of these resin-derived compounds correlated with the terrigenous clay components and with the presence of pollen. The presence of polycyclic diterpenoids was also correlated with the distribution patterns and inferred sources of other sediment lipid constituents (e.g. n-alkanes, n-fatty acids, etc.).Potamic transport, followed by turbidite redistribution are the probable input mechanisms of these resin-derived compounds to the deep-sea sediments. These diterpenoids appear to be excellent biological markers of resinous higher plants.  相似文献   
52.
The comprehensive biomarker characteristics from previously undescribed Middle Jurassic clays of Poland are presented. The molecular composition of the organic matter (OM) derived from clays of Aalenian to Callovian age has not changed significantly through time. High relative concentrations of many biomarkers typical for terrestrial material suggest a distinct dominance of OM derived from land plants. Increasing concentrations of C29-diaster-13(17)-enes towards the northern part of the basin indicate an increase in terrestrial input. This terrestrial material would have originated from the enhanced transport of organic matter from land situated at the northern bank of the basin, i.e., the Fennoscandian Shield. The organic matter was deposited in an oxic to suboxic environment, as indicated by relatively low concentrations of C33–C35 homohopanes, moderate to high Pr/Ph ratio values, an absence of compounds characteristic for anoxia and water column stratification, such as isorenieratane, aryl isoprenoids and gammacerane, as well as common benthic fauna and burrows. δ18O measurements from calcitic rostra of belemnites suggest that the mean value of the Middle Jurassic sea-water temperature of the Polish Basin was 13.1 °C. It is suggested that this mirrored the temperature of the lower water column because belemnites are considered here to be necto-benthic. The organic matter from the Middle Jurassic basin of Poland is immature. This is clearly indicated by a large concentration of biomarkers with the biogenic configurations, such as ββ-hopanes, hop-13(18)-enes, hop-17(21)-enes, diasterenes and sterenes. The identification of preserved, unaltered biomolecules like ferruginol, 6,7-dehydroferruginol and sugiol in Protopodocarpoxylon wood samples from these sediments present particularly strong evidence for the presence of immature OM in the Middle Jurassic sediments. Moreover, the occurrence of these polar diterpenoids is important due to the fact that they are definitely the oldest known natural products detected in geological samples.  相似文献   
53.
Discovery of diamondiferous kimberlites in the Mainpur Kimberlite Field, Raipur District, Chhattisgarh in central India, encouraged investigation of similar bodies in other parts of the Bastar craton. The earlier known Tokapal ultramafic intrusive body, located beyond the 19-km milestone in Tokapal village along the Jagdalpur–Geedam road, was reinterpreted as crater-facies kimberlite. Its stratigraphic position in the Meso-Neoproterozoic intracratonic sedimentary Indravati basin makes it one of the oldest preserved crater-facies kimberlite systems. Ground and limited subsurface data (dug-, tube-wells and exploratory boreholes) have outlined an extensive surface area (>550 ha) of the kimberlite. The morphological and surface color features of this body on enhanced satellite images suggest that there is a central feeder surrounded by a collar and wide pyroclastic apron. Exploration drilling indicates that the central zone probably corresponds to a vent overlain by resedimented volcaniclastic (epiclastic) rocks that are surrounded by a 2-km-wide spread of pyroclastic rocks (lapilli tuff, tuff/ash beds and volcaniclastic breccia). Drill-holes also reveal that kimberlitic lapilli tuffs and tuffs are sandwiched between the Kanger and Jagdalpur Formations and also form sills within the sedimentary sequence of the Indravati basin. The lapilli tuffs are commonly well stratified and display slumping. Base surges and lava flows occur in the southern part of the Tokapal system. The geochemistry and petrology of the rock correspond to average Group I kimberlite with a moderate degree of contamination. However, the exposed rock is intensely weathered and altered with strong leaching of mobile elements (Ba, Rb, Sr). Layers of vesicular fine-grained glassy material represent kimberlitic lava flows. Tuffs containing juvenile lapilli with pseudomorphed olivine macrocrysts are set in a talc–serpentine–carbonate matrix with locally abundant spinel and sphene. Garnet has not been observed, and phlogopite is very rare. Very limited microdiamond testing (two 18-kg samples) proved negative; however, the composition of chromite grains indicate crystallization in the diamond stability field.  相似文献   
54.
The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite ( REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520–1,500). Calciocarbonatites ( REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95–160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (Nd 1.4–5.4, 87Sr/86 Sr<Bulk Earth) indicate a depleted mantle source for the alkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and represents the only occurrence of carbonatite and kimberlite rocks in the Andes.  相似文献   
55.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
56.
The Viséan (Carboniferous) sedimentary succession of the basinal Kulm facies (Rhenish Mountains) was investigated in detail in order to achieve a high‐resolution stratigraphic subdivision and correlation. Additionally, the ranges of fossil index taxa (ammonoids), fossil marker beds, volcaniclastic horizons and sedimentary features (e.g. colour changes) were integrated in the correlation. As a result, a comprehensive database was compiled, which contains 190 stratigraphic events of the Viséan interval of this area. Several sections are almost completely composed of shales, which are regarded to represent a slow but constant basinal background sedimentation of the Kulm facies. The thickness of lithological homogeneous sections thus indicates an approximately linear record of time and the average thicknesses of biozones and positions of stratigraphic events can easily be calculated from the compiled database. The result is an approximately time‐linear biostratigraphic scale for the Viséan Stage of the Kulm Basin. Given a numerical length of the Viséan Stage of ca. 19 Ma, 190 stratigraphic events give a mean resolution of 100 000 years. This is unique in Palaeozoic stratigraphy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
57.
Mylonitic gneisses from the Münchberg Massif contain single grains (type I) and polycrystalline aggregates (type II) of garnet displaying a distinct elongation parallel to a macroscopic lineation which is interpreted as the result of ductile deformation. Lattice-preferred orientations of quartz (textures) symmetrical to the macroscopic foliation and lineation and the lack of rotational microfabrics indicate that the bulk deformation was pure shear at least during the latest strain increments. Garnet textures measured by EBSD together with microprobe analyses demonstrate that these two structural types of garnet can be related to two different processes of ductile deformation: (1) For the single grains stretching can be attributed to diffusion creep along grain boundary zones (Coble creep). The related mass transfer is indicated by the fact that primary growth zones are cut off at the long faces of the grains while the related strain shadow domains do not show comparable chemical zoning. Pressure solution and precipitation suitable to produce similar structures can be largely ruled out because retrogressive reactions pointing to the presence of free hydrous fluids are missing. (2) For the polycrystalline garnet aggregates consisting of cores grading into fine-grained mantles, dislocation creep and associated rotation recrystallization can be assumed. Continuous lattice rotation from the core to the outer polycrystalline rim allow a determination of the related dominant slip systems which are {100}<010> and equivalent systems according to the cubic lattice symmetry. The same holds for garnets which appear to be completely recrystallized. For this type of fine-grained aggregates an alternative nucleation model is discussed. Due to penetrative dislocation glide in connection with short range diffusion and the resulting lattice rotation, primary growth zones are strongly disturbed.Since for the considered rock unit of the Münchberg Massif peak metamorphic temperatures between 630 and 670 °C can be assumed, this study clearly demonstrates that the inferred processes of ductile garnet deformation can occur not only in HT regimes as often suggested in the literature even if embedded within a matrix of “low-strength” minerals like quartz, feldspars and micas.  相似文献   
58.
59.
60.
Shells of Arctica islandica collected between 1884 and 2004 from Öresund, Kattegat and Skagerrak (Swedish West Coast) were used to monitor local climate variations and the influence of human activities on the local environment. For this purpose, we analysed the growth, structure and chemical composition of these shells and compared them with shells collected from Kiel Bay, Norway and Iceland. The growth rate of the studied shells registers an NAO periodicity of ca 8 years. However, the observed signal is weak because of other environmental interferences that are either of natural or anthropogenic origin. For example, the oxygen isotope ratios show temperature fluctuation, but also the influx of low salinity water. Higher contents of S, N, Cu, Zn, As, Cd and P in shell portions formed during the last century are related to human activities such as mining and industrial development. Our study indicates that in order to use Arctica shells as archives of climate change it is necessary to study the full range of environmental data that is recorded in the shells by using a multi element and isotope approach in combination with different analytical techniques including investigation of growth rates and shell structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号