首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   10篇
  国内免费   4篇
测绘学   16篇
大气科学   15篇
地球物理   72篇
地质学   218篇
海洋学   18篇
天文学   25篇
综合类   1篇
自然地理   34篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   13篇
  2018年   14篇
  2017年   8篇
  2016年   8篇
  2015年   15篇
  2014年   16篇
  2013年   19篇
  2012年   20篇
  2011年   23篇
  2010年   28篇
  2009年   32篇
  2008年   29篇
  2007年   18篇
  2006年   22篇
  2005年   6篇
  2004年   13篇
  2003年   4篇
  2002年   10篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
1.
2.
Agricultural use of soils implies tillage and often compaction and therefore influences processes on soil surface and affects infiltration of water into the subsoil. Although many studies on soil surface processes or flow patterns in soils exist, works relating both are rare in literature. We did two tracer experiments with Brilliant Blue FCF on a tilled and compacted plot and a non‐tilled one to investigate water storage on the soil surface during simulated rainfall and changes of soil microtopography, to analyse the associated flow patterns in the soil and to relate both to tillage and compaction. Our results show that storage was larger on the tilled and compacted plot than on the non‐tilled one. After tillage, transport processes above the plough pan were partly disconnected from those underneath because macropores were disrupted and buried by the tillage operation. However, preferential flow along cracks occurred on both plots and the macropores buried below the tillage pan still functioned as preferential flow paths. Therefore, we conclude that the studied soil is susceptible to deep vertical solute propagation at dry conditions when cracks are open, irrespective of tillage and compaction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
3.
Hala Lake is located in the Qilian Mountains, Qinghai Province, China, at 4,078?m a.s.l. Its sediments contain an archive of climate and hydrologic changes during the Late Quaternary, as it is located close to the area influenced by the East-Asian summer monsoon and westerly-driven air masses. Sedimentation patterns and depositional conditions within the lake were investigated using eight sediment cores from different water depths, and this information was used to evaluate the feasibility of using a single core to reconstruct past climate and hydrological conditions. Long core H7, from the center of the lake (65?m water depth) and core H8 from a western, near-shore location (20?m water depth), were compared in detail using sediment composition and geochemical data (X-ray fluorescence, loss-on-ignition and CNS analysis). Age models were constructed using 17 AMS radiocarbon dates and indicate negligible reservoir error for sediments from the lake center and?~1,000?year errors for the near-shore sediment core. Cores H1?CH5 and HHLS21-1 revealed a sediment succession from sand and silty clay to laminated clay on the southern side of the lake. Undisturbed, finely laminated sediments were found at water depths???15?m. Core H5 (2.5?m long), from 31?m water depth, yielded abundant green algal mats mixed with clayey lake deposits and was difficult to interpret. Algae occurred between 25 and 32?m water depth and influenced the dissolved oxygen content of the stratified lake. Comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, be attributed to internal lacustrine processes, independent of climate influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however, showed that major climate shifts, of regional to global significance, can be tracked and allow reconstruction of lake level changes over the last 24,000?years. Results indicate advance of glaciers into the lake basin during the LGM, at which time the lake experienced lowest levels, 25?C50?m below present stage. Stepwise refilling began at ca. 16 kyr BP and reached the ?25?m level during the B?lling/Aller?d warm phase, ca. 13.5 kyr BP. A desiccation episode falls within the Younger Dryas, followed by a substantial lake level rise during the first millennium of the Holocene, a result of climate warming, which promoted glacier melt. By ca. 7.6 kyr BP, the lake reached a stable high stand similar to the present level, which persisted until ca. 6 kyr BP. Disturbed sediments in core H7 indicate a single mass flow that was most likely triggered by a major seismic event?~8.5 kyr BP. Subsequent lake development remains unclear as a consequence of data mismatches, but may indicate a general trend to deteriorating conditions and lake level lowstands at ca. 5.0?C4.2, 2.0 and 0.5 kyr BP.  相似文献   
4.
Transient thermal signals such as Pleistocene surface temperature variations or exhumation of great rock volumes are important for the current thermal regime of the Eastern Alpine crust. In this study transient 1-D forward simulations and an analytical approach were used to estimate the order of magnitude of these effects. A comparison with numerical forward simulations and inverse analyses of steady-state heat conduction yields the following main conclusions with respect to the thermal regime of the Eastern Alps along the TRANSALP profile: (1) The change of surface temperatures in the past affects mainly the uppermost part of the Eastern Alpine crust. It results in a maximum thermal signature of more than − 6 K at a depth of 2 km. The deviations from a steady-state temperature gradient and heat flow in the region of the Tauern Window range from 0.3–4 K km− 1 and 0–6 mW m− 2, respectively, with maximum values at the surface. (2) Exhumation of the Eastern Alpine lithosphere may result in a thermal signature of up to 4 K at a depth of 1 km. The thermal signature increases further with depth to a maximum of approximately 80 K at a depth of 50 km. As the temperature gradient of the exhumation signal is almost zero at the base of the crust, Moho heat flow appears to be not critically perturbed. (3) The combined effect of exhumation and changing surface temperatures at the Tauern Window amounts to less than 15% of the steady-state temperatures at a depth of  8 km and to less than 10% at the base of Eastern Alpine root. The corresponding perturbation in heat flow is less than 20% at a depth of 4 km, approaching zero below 40 km.  相似文献   
5.
湖南雪峰弧形构造隆起带(中-上元古界)囊括了该省80%以上的原生金矿(“沃溪式”金矿)和90%以上的砂金,也是世界名的金-锑-钨综合矿化带。其中,赋存于上元古界板溪群马底驿组紫红色板岩中,位于湘西北沅陵县的沃溪金-锑-钨矿,即湘西金矿为代表性矿床。它也是我国仅次于湘中锡矿山的第二大锑矿生产基地。  相似文献   
6.
During Integrated Ocean Drilling Program Expedition 325, 34 holes were drilled along five transects in front of the Great Barrier Reef of Australia, penetrating some 700 m of late Pleistocene reef deposits (post‐glacial; largely 20 to 10 kyr bp ) in water depths of 42 to 127 m. In seven holes, drilled in water depths of 42 to 92 m on three transects, older Pleistocene (older than last glacial maximum, >20 kyr bp ) reef deposits were recovered from lower core sections. In this study, facies, diagenetic features, mineralogy and stable isotope geochemistry of 100 samples from six of the latter holes were investigated and quantified. Lithologies are dominated by grain‐supported textures, and were to a large part deposited in high‐energy, reef or reef slope environments. Quantitative analyses allow 11 microfacies to be defined, including mixed skeletal packstone and grainstone, mudstone‐wackestone, coral packstone, coral grainstone, coralline algal grainstone, coral‐algal packstone, coralline algal packstone, Halimeda grainstone, microbialite and caliche. Microbialites, that are common in cavities of younger, post‐glacial deposits, are rare in pre‐last glacial maximum core sections, possibly due to a lack of open framework suitable for colonization by microbes. In pre‐last glacial maximum deposits of holes M0032A and M0033A (>20 kyr bp ), marine diagenetic features are dominant; samples consist largely of aragonite and high‐magnesium calcite. Holes M0042A and M0057A, which contain the oldest rocks (>169 kyr bp ), are characterized by meteoric diagenesis and samples mostly consist of low‐magnesium calcite. Holes M0042A, M0055A and M0056A (>30 kyr bp ), and a horizon in the upper part of hole M0057A, contain both marine and meteoric diagenetic features. However, only one change from marine to meteoric pore water is recorded in contrast with the changes in diagenetic environment that might be inferred from the sea‐level history. Values of stable isotopes of oxygen and carbon are consistent with these findings. Samples from holes M0032A and M0033A reflect largely positive values (δ18O: ?1 to +1‰ and δ13C: +1 to +4‰), whereas those from holes M0042A and M0057A are negative (δ18O: ?4 to +2‰ and δ13C: ?8 to +2‰). Holes M0055A and M0056A provide intermediate values, with slightly positive δ13C, and negative δ18O values. The type and intensity of meteroric diagenesis appears to have been controlled both by age and depth, i.e. the time available for diagenetic alteration, and reflects the relation between reef deposition and sea‐level change.  相似文献   
7.
PLL Tracking Performance in the Presence of Oscillator Phase Noise   总被引:3,自引:3,他引:3  
The tracking performance of a Phase Lock Loop (PLL) is affected by the influence of several error sources. In addition to thermal noise and dynamic stress error, oscillator phase noise can cause significant phase jitter which degrades the tracking performance. Oscillator phase noise is usually caused by two different effects: Allan deviation phase noise is caused by frequency instabilities of the receiver's reference oscillator and the satellite's frequency standard. It can be termed as system-inherent phase noise and is relevant for both static and dynamic applications. “External” phase noise, however, is caused by vibration and is a major problem for dynamic applications. In the context of this paper, both types of phase noise will be modeled and the resulting integrals will be evaluated for PLLs up to the third order. Besides, phase jitter induced by thermal noise and signal dynamics will also be discussed, thus providing all necessary formulas for analyzing the performance of a phase lock loop in case of different forms of stress. Since the main focus is centered on the effects of oscillator phase noise, the overall PLL performance is graphically illustrated with and without consideration of oscillator phase noise. © 2002 Wiley Periodicals, Inc.  相似文献   
8.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号