首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
天文学   25篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   3篇
  1975年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Akiva Bar-Nun  Diana Laufer 《Icarus》2003,161(1):157-163
In a unique machine, the first of its kind, large (200 cm2 × 10 cm) samples of gas-laden amorphous ice were prepared at 80 K and 10−5 Torr. The sample consisted of a fluffy agglomerate of 200-μm ice grains, similar to what is presumed to be the structure of comet nuclei. The sample was heated from above by IR radiation. The properties studied were gas content in the ice and its emanation from the ice upon warming and bearing on the gas/water vapor ratio observed in cometary comae vs this ratio in cometary nuclei and the effect of internal trapped gas on the thermal conductivity of the ice and the density and mechanical properties of pure ice vs gas-laden ice. These findings might have significance for the interpretation of comet observations, the forthcoming ESA’s Rosetta space mission to Comet 46P/Wirtanen in 2012, and to other comet missions.  相似文献   
22.
The evolution of a comet nucleus is investigated, taking into account the crystallization process by which the gas trapped in the ice is released to flow through the porous ice matrix. The equations of conservation of the energy and of the masses of ice and gas are solved throughout the nucleus, to obtain the evolution of the temperature, gas pressure and density profiles. A spherical nucleus composed of cold, porous amorphous ice, with 10% of CO trapped in it, serves as initial model. Several values of density (porosity) and pore size are considered. For each combination of parameters the model is evolved for 20-30 revolutions in comet P/Halley's orbit. Two aspects of the release of gas upon crystallization are analyzed and discussed: (a) the resulting continuous outward flux with high peaks at the time of crystallization, which is a cyclic process in the low-density models and sporadic in the high-density ones; (b) the internal pressures obtained down to depths of a few tens to approximately 200 m (depending on parameters), that are found to exceed the compressional strength of cometary ice. As a result, both cracking and explosions of the overlying ice layer and ejection of gas and ice/dust grains are expected to follow crystallization. They should appear as outbursts or sudden brightening of the comet. The model of 0.2 g cm-3 density is found to reproduce quite well many of the light-curve and activity characteristics of comet P/Halley.  相似文献   
23.
Our model [Dimitrov, V., Bar-Nun, A., 1999. A model of energy dependent agglomeration of hydrocarbon aerosol particles and implication to Titan's aerosol. J. Aerosol. Sci. 30(1), 35-49] describes the experimentally found polymerization of C2H2 and HCN to form aerosol embryos, their growth and adherence to form various aerosols objects [Bar-Nun, A., Kleinfeld, I., Ganor, E., 1988. Shape and optical properties of aerosols formed by photolysis of C2H2, C2H4 and HCN. J. Geophys. Res. 93, 8383-8387]. These loose fractal objects describe well the findings of DISR on the Huygens probe [Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E., 2008. Measurements of methane absorption by the descent imager/spectral radiometer (DISR) during its descent through Titan's atmosphere. Planet. Space Sci., this issue, doi:10.1016/j.pss.2007]. These include (1) various regular objects of R=(0.035-0.064)×10−6 m, as compared with DISR's 0.05×10−6 m; (2) diverse low and high fractal structures composed of random combinations of various regular and irregular objects; (3) the number density of fractal particles is 6.9×106 m−3 at Z=100 km, as compared with DISR's finding of 5.0×106 m−3 at Z=80 km; (4) the number of structural units per higher fractals in the atmosphere at Z∼100 km is (2400-2700), as compared with DISR's 3000, and their size being of R=(5.4-6.4)×10−6 m will satisfy this value and (5) condensation of CH4 on the highly fractal structures could begin at the altitude where thin methane clouds were observed, filling somewhat the new open fractal structures.  相似文献   
24.
The relatively low value of Xe/Kr in the atmospheres of Earth and Mars seems to rule out meteorites as the major carriers of noble gases to the inner planets. Laboratory experiments on the trapping of gases in ice forming at low temperatures suggest that comets may be a better choice. It is then possible to develop a model for the origin of inner planet atmospheres based on volatiles delivered by comets added to volatiles originally trapped in planetary rocks. The model will be tested by results from the Galileo Entry Probe.  相似文献   
25.
A. Bar-Nun  G. Notesco 《Icarus》2007,190(2):655-659
Recent attempts using high resolution spectra to detect N+2 in several comets were unsuccessful [Cochran, A.L., Cochran, W.D., Baker, E.S., 2000. Icarus 146, 583-593; Cochran, A.L., 2002. Astrophys. J. 576, L165-L168]. The upper limits on N+2 in comparison with the positively detected CO+ for Comets C/1995 O1 Hale-Bopp, 122P/1995 S1 de Vico and 153P/2002 C1 Ikeya-Zhang range between . Ar was not detected in three recent comets [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98], with upper limits of Ar/CO<(3.4-7.8)×10−2 for Comets C/1999 T1 McNaught-Hartley, C/2001 A2 LINEAR and C/2000 WM1 LINEAR. The Ar detected by Stern et al. [Stern, S.A., Slater, D.C., Festou, M.C., Parker, J.Wm., Gladstone, G.R., A'Hearn, M.F., Wilkinson, E., 2000. Astrophys. J. 544, L169-L172] for Comet C/1995 O1 Hale-Bopp, gives a ratio Ar/CO=7.25×10−2, which was not confirmed by Cosmovici et al. [Cosmovici, C.B., Bratina, V., Schwarz, G., Tozzi, G., Mumma, M.J., Stalio, R., 2006. Astrophys. Space Sci. 301, 135-143]. Trying to solve the two problems, we studied experimentally the trapping of N2+CO+Ar in amorphous water ice, at 24-30 K. CO was found to be trapped in the ice 20-70 times more efficiently than N2 and with the same efficiency as Ar. The resulting Ar/CO ratio of 1.2×10−2 is consistent with Weaver et al.'s [Weaver, H.A., Feldman, P.D., Combi, M.R., Krasnopolsky, V., Lisse, C.M., Shemansky, D.E., 2002. Astrophys. J. 576, L95-L98] non-detection of Ar. However, with an extreme starting value for N2/CO = 0.22 in the region where the ice grains which agglomerated to produce comet nuclei were formed, the expected N2/CO ratio in the cometary ice should be 6.6×10−3, much higher than its non-detection limit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号