首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62598篇
  免费   1307篇
  国内免费   1233篇
测绘学   1615篇
大气科学   4843篇
地球物理   12654篇
地质学   23033篇
海洋学   5521篇
天文学   13327篇
综合类   300篇
自然地理   3845篇
  2022年   417篇
  2021年   703篇
  2020年   709篇
  2019年   753篇
  2018年   1508篇
  2017年   1488篇
  2016年   1752篇
  2015年   1107篇
  2014年   1716篇
  2013年   3237篇
  2012年   2125篇
  2011年   2828篇
  2010年   2449篇
  2009年   3121篇
  2008年   2668篇
  2007年   2744篇
  2006年   2649篇
  2005年   1905篇
  2004年   1828篇
  2003年   1673篇
  2002年   1640篇
  2001年   1452篇
  2000年   1415篇
  1999年   1123篇
  1998年   1148篇
  1997年   1185篇
  1996年   971篇
  1995年   969篇
  1994年   886篇
  1993年   754篇
  1992年   769篇
  1991年   704篇
  1990年   775篇
  1989年   687篇
  1988年   658篇
  1987年   757篇
  1986年   625篇
  1985年   797篇
  1984年   889篇
  1983年   850篇
  1982年   819篇
  1981年   726篇
  1980年   763篇
  1979年   642篇
  1978年   612篇
  1977年   604篇
  1976年   546篇
  1975年   533篇
  1974年   548篇
  1973年   563篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Spectral features of plant species in the visible to SWIR (0.4–2.5 μm) region have been studied extensively, but scanty attention has been given to plant thermal infrared (TIR: 4–14 μm) properties. This paper presents preliminary results of a study that was conducted first time in India to measure radiance and emissivity properties of eight plant species in TIR spectral region in the field conditions using a FTIR (Fourier Transform Infrared) field spectroradiometer working in 4–14 μm at an agriculture experimental farm. Several spectral features in the emissivity spectra of plant species were observed that are probably related to the leaf chemical constituents, such as cellulose and xylan (hemicellulose) and structural aspects of leaf surface like abundance of trichomes and texture. Observations and results from the field measurements were supported by the laboratory measurements like biochemical analysis. These preliminary field emissivity measurements of leaves in TIR show that there is useful spectral information that may be detectable by field-based instrument. More detailed field and laboratory measurements are underway to explore this research theme.  相似文献   
182.
Abstract

Image mapping using data from visible and infrared sensors has, as a major drawback, the frequent cloud cover experienced in many countries. This is one of the main reasons why topographic maps at 1:100,000 scale and larger are often outdated. The results of a study which investigated the possibilities of fusing up‐to‐date spaceborne microwave data with existing images from optical sensors for topographic map updating at a scale of 1:100, 000 are presented in this paper. A key issue researched was the influence of geometric distortions and corrections of remote sensing data on the results of pixel based digital image fusion. After having terrain‐geocoded and radiometrically enhanced imagery from the Landsat, SPOT, ERS‐1 and JERS‐1 satellites, the data were fused applying a variety of colour transformation techniques as well as statistical or arithmetic methods. Initially, the image fusion was implemented using images covering a test site in the north of The Netherlands in order to calibrate specified combinations and techniques in a rather flat area. With the experience gained, the remote sensing data acquired over the research site were processed. The research test site is located in a typical Developing Country in the humid Tropics, on the mountainous south‐west coast of Sumatra in Indonesia. The results of the various applied techniques and image combinations were evaluated with reference to their capability to overcome the cloud cover problem. New combinations of techniques and images were developed as result of an optimisation process. The research produced two prototypes of annotated 1:100,000 scale image maps containing fused, cloud‐free optical/microwave imagery.  相似文献   
183.
Synthetic aperture radar (SAR) image formation processing assumes that the scene is stationary, and to focus an object, one coherently sums a large number of independent returns. Any target motion introduces phases that distort and/or translate the target's image. Target motion produces a smear primarily in the azimuth direction of the SAR image. Time-frequency (TF) modeling is used to analyze and correct the residual phase distortions. An interactive focusing algorithm based on TF modeling demonstrates how to correct the phase and to rapidly focus the mover. This is demonstrated on two watercraft observed in a SAR image. Then, two time-frequency representations (TFRs) are applied to estimate the motion parameters of the movers or refocus them or both. The first is the short-time Fourier transform, from which a velocity profile is constructed based on the length of the smear. The second TFR is the time-frequency distribution series, which is a robust derivative of the Wigner-Ville distribution that works well in this SAR environment. The smear is a modulated chirp, from which a velocity profile is plotted and the phase corrections are integrated to focus the movers. The relationship between these two methods is discussed. Both methods show good agreement on the example.  相似文献   
184.
The Nisyros Volcano (Greece) was monitored by satellite and ground thermal imaging during the period 2000–2002. Three night-scheduled Landsat-7 ETM+ thermal (band 6) images of Nisyros Island were processed to obtain land surface temperature. Ground temperature data were also collected during one of the satellite overpasses. Processed results involving orthorectification and 3-D atmospheric correction clearly show the existence of a thermal anomaly inside the Nisyros Caldera. This anomaly is associated mainly with the largest hydrothermal craters and has land surface temperatures 5–10 °C warmer than its surroundings. The ground temperature generally increased by about 4 °C inside the main crater over the period 2000–2002. Ground thermal images of the hydrothermal Stephanos Crater were also collected in 2002 using a portable thermal infrared camera. These images were calibrated to ground temperature data and orthorectified. A difference of about 0–2 °C was observed between the ground thermal images and the ground temperature data. The overall study demonstrates that satellite remote sensing of low-temperature fumarolic fields within calderas can provide a reliable long-term monitoring tool of dormant volcanoes that have the potential to reactivate. Similarly, a portable thermo-imager can easily be deployed for real-time monitoring using telemetric data transfer. The operational costs for both systems are relatively low for an early warning system.  相似文献   
185.
This paper presents a method for using the intensity of returns from a scanning light detection and ranging (lidar) system from a single viewing point to identify the location and measure the diameter of tree stems within a forest. Such instruments are being used for rapid forest inventory and to provide consistent supporting information for airborne lidars. The intensity transect across a tree stem is found to be consistent with a simple model parameterised by the range and diameter of the trunk. The stem diameter is calculated by fitting the model to transect data. The angular span of the stem can also be estimated by using a simple threshold where intensity values are tested against the expected intensity for a stem of given diameter. This is useful when data are insufficient to fit the model or the stem is partially obscured. The process of identifying tree positions and trunk diameters is fully automated and is shown to be successful in identifying a high proportion of trees, including some that are partially obscured from view. The range and bearing to trees are in excellent agreement with field data. Trunk angular span and diameter estimations are well correlated with field measurements at the plot scale. The accuracy of diameter estimation is found to decrease with range from the scanning position and is also reduced for stems subtending small angles (less than twice the scanning resolution) to the instrument. A method for adjusting survey results to compensate for trees missed due to obscuration from the scanning point and the use of angle count methods is found to improve basal area estimates and achieve agreement within 4% of field measurements.  相似文献   
186.
Fine spatial resolution (e.g., <300 m) thermal data are needed regularly to characterise the temporal pattern of surface moisture status, water stress, and to forecast agriculture drought and famine. However, current optical sensors do not provide frequent thermal data at a fine spatial resolution. The TsHARP model provides a possibility to generate fine spatial resolution thermal data from coarse spatial resolution (≥1 km) data on the basis of an anticipated inverse linear relationship between the normalised difference vegetation index (NDVI) at fine spatial resolution and land surface temperature at coarse spatial resolution. The current study utilised the TsHARP model over a mixed agricultural landscape in the northern part of India. Five variants of the model were analysed, including the original model, for their efficiency. Those five variants were the global model (original); the resolution-adjusted global model; the piecewise regression model; the stratified model; and the local model. The models were first evaluated using Advanced Space-borne Thermal Emission Reflection Radiometer (ASTER) thermal data (90 m) aggregated to the following spatial resolutions: 180 m, 270 m, 450 m, 630 m, 810 m and 990 m. Although sharpening was undertaken for spatial resolutions from 990 m to 90 m, root mean square error (RMSE) of <2 K could, on average, be achieved only for 990–270 m in the ASTER data. The RMSE of the sharpened images at 270 m, using ASTER data, from the global, resolution-adjusted global, piecewise regression, stratification and local models were 1.91, 1.89, 1.96, 1.91, 1.70 K, respectively. The global model, resolution-adjusted global model and local model yielded higher accuracy, and were applied to sharpen MODIS thermal data (1 km) to the target spatial resolutions. Aggregated ASTER thermal data were considered as a reference at the respective target spatial resolutions to assess the prediction results from MODIS data. The RMSE of the predicted sharpened image from MODIS using the global, resolution-adjusted global and local models at 250 m were 3.08, 2.92 and 1.98 K, respectively. The local model consistently led to more accurate sharpened predictions by comparison to other variants.  相似文献   
187.
建筑物的渐进式图形简化方法   总被引:1,自引:0,他引:1  
以建筑物轮廓图形的直线段为基本图形单元,研究了建筑物图形渐进式综合的算法以及综合过程中的控制策略和数据预处理方法,并实现了该算法.  相似文献   
188.
Software receivers have had a discernable impact on the GNSS research community. Often such receivers are implemented in a compiled programming language, such as C or C++. A software receiver must emulate the digital signal processing (DSP) algorithms executed on dedicated hardware in a traditional receiver. The DSP algorithms, most notably correlation, have a high computational cost; this burden precludes many software receivers from running in real time. However, the computational cost can be lessened by utilizing single instruction multiple data (SIMD) operations found on modern ×86 processors. The following demonstrates how C/C++ compatible code can be written to directly utilize the SIMD instructions. First, an analysis is carried out to demonstrate why real time operation is not possible when using traditional C/C++ code is carried out. Secondly a tutorial outlines how to write and insert ×86 assembly, with SIMD operations, into C/C++ code. Performance gains achieved via SIMD operations are then demonstrated, and pseudo code outlines how SIMD operations can be employed to perform correlation. Finally, a C/C++ compatible SIMD enabled arithmetic library is added to the GPS Toolbox for use in software receivers.  相似文献   
189.

Acknowledgement for Referees

Reviewers of the Journal of Geodesy for Volume 79  相似文献   
190.
To derive a matched filter for detecting a weak target signal in a hyperspectral image, an estimate of the band-to-band covariance of the target-free background scene is required. We investigate the effects of including some of the target signal in the background scene. Although the covariance is contaminated by the presence of a target signal (there is increased variance in the direction of the target signature), we find that the matched filter is not necessarily affected. In fact, if the variation in plume strength is strictly uncorrelated with the variation in background spectra, the matched filter and its signal-to-clutter ratio (SCR) performance will not be impaired. While there is little a priori reason to expect significant correlation between the plume and the background, there usually is some residual correlation, and this correlation leads to a suppressing effect that limits the SCR obtainable even for strong plumes. These effects are described and quantified analytically, and the crucial role of this correlation is illustrated with some numerical examples using simulated plumes superimposed on real hyperspectral imagery. In one example, we observe an order-of-magnitude loss in SCR for a matched filter based on the contaminated covariance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号