首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   10篇
  国内免费   4篇
测绘学   5篇
大气科学   25篇
地球物理   66篇
地质学   81篇
海洋学   80篇
天文学   17篇
综合类   1篇
自然地理   16篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   8篇
  2018年   10篇
  2017年   11篇
  2016年   10篇
  2015年   12篇
  2014年   11篇
  2013年   19篇
  2012年   11篇
  2011年   18篇
  2010年   11篇
  2009年   10篇
  2008年   14篇
  2007年   13篇
  2006年   8篇
  2005年   18篇
  2004年   11篇
  2003年   9篇
  2002年   8篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1981年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有291条查询结果,搜索用时 15 毫秒
41.
Atsushi  Noda 《Island Arc》2005,14(4):687-707
Abstract The focus in the present study is on characterizing spatial patterns of textural and petrological variabilities, and on evaluating mechanisms influencing the textural and petrological components of modern river, beach and shelf sands in a volcanically active back‐arc tectonic setting. Abashiri Bay and the surrounding area in eastern Hokkaido, Japan, has volcanic source land within a back‐arc region associated with subduction of the Pacific Plate beneath the Okhotsk (North American) Plate. A total of 41 river, beach and shelf sands were obtained for grain‐size and modal composition analyses. Multivariate analytical techniques of hierarchical cluster and principal component analyses were performed on the textural and petrological data for investigating relations among quantitative variables. On the basis of grain‐size data, four sedimentary zones were identified: zone I, palimpsest zone; zone II, relict zone; zone III, modern (proteric) zone; zone IV, coastal sedimentary zone. All sands are feldspatholithic and quartz‐deficient. The framework (quartz, feldspar and rock fragment) modal compositions were also classified into four clusters, A–D. The characteristic components of each cluster are as follows: cluster A, felsic volcanic rock fragments; cluster B, andesitic–basaltic volcanic rock fragments; cluster C, mixed or plagioclase; cluster D, sedimentary rock fragments. Almost all sands in western and central Abashiri Bay belong to cluster A, where the original compositions are influenced by Kutcharo pyroclastic flow deposits. Andesitic–basaltic lava and Neogene volcaniclastic and sedimentary rocks have a major influence on the compositions of shelf sands in eastern Abashiri Bay. The modal compositions are basically controlled by the source lithology. Compositional maturity (percentage of quartz to feldspar and rock fragments; Q/FR%) slightly increased, in order, from river (1.2), zone IV (coastal, 1.7), zone II (relict, 2.2), zone I (palimpsest, 3.6), to zone III (modern proteric, 7.0). Greater maturity in the recycled sediments is indicative of weathering under the sea or abrasion by transportation induced by sea‐level fluctuations, waves, or sea currents. Several controlling factors – (i) source lithological; (ii) mineralogical; (iii) climatic; and (iv) geomorphological controls – might still cause low maturity through all sedimentary zones other than the continental margin sands previously reported.  相似文献   
42.
Atsushi  Matsuoka  Qun  Yang  Masahiko  Takei 《Island Arc》2005,14(4):338-345
Abstract The Xialu chert radiolarian fauna is latest Jurassic–earliest Cretaceous in age (Pseudodictyomitra carpatica zone) and contains many taxa in common with coeval northern hemisphere middle‐latitude (temperate) radiolarian faunas represented by the Torinosu fauna in southwest Japan. Common elements include Eucyrtidiellum pyramis (Aita), Protunuma japonicus Matsuoka & Yao, Sethocapsa pseudouterculus Aita, Sethocapsa (?) subcrassitestata Aita, Archaeodictyomitra minoensis (Mizutani), Stichocapsa praepulchella Hori and Xitus gifuensis (Mizutani). The Xialu fauna is less similar to low‐latitude (tropical) assemblages represented by the Mariana fauna. For this reason, the Xialu fauna is regarded as representative of a southern hemisphere middle‐latitude (temperate) fauna. A mirror‐image bi‐temperate provincialism to the equator in radiolarian faunas is reconstructed for the Ceno‐Tethys and Pacific Ocean in latest Jurassic–earliest Cretaceous time.  相似文献   
43.
44.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   
45.
46.
A buried, old volcanic body (pre‐Komitake Volcano) was discovered during drilling into the northeastern flank of Mount Fuji. The pre‐Komitake Volcano is characterized by hornblende‐bearing andesite and dacite, in contrast to the porphyritic basaltic rocks of Komitake Volcano and to the olivine‐bearing basaltic rocks of Fuji Volcano. K‐Ar age determinations and geological analysis of drilling cores suggest that the pre‐Komitake Volcano began with effusion of basaltic lava flows around 260 ka and ended with explosive eruptions of basaltic andesite and dacite magma around 160 ka. After deposition of a thin soil layer on the pre‐Komitake volcanic rocks, successive effusions of lava flows occurred at Komitake Volcano until 100 ka. Explosive eruptions of Fuji Volcano followed shortly after the activity of Komitake. The long‐term eruption rate of about 3 km3/ka or more for Fuji Volcano is much higher than that estimated for pre‐Komitake and Komitake. The chemical variation within Fuji Volcano, represented by an increase in incompatible elements at nearly constant SiO2, differs from that within pre‐Komitake and other volcanoes in the northern Izu‐Bonin arc, where incompatible elements increase with increasing SiO2. These changes in the volcanism in Mount Fuji may have occurred due to a change in regional tectonics around 150 ka, although this remains unproven.  相似文献   
47.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   
48.
A mammalian dentary discovered in the Coniacian Ashizawa Formation (Fukushima, northeastern Japan) is described. The specimen is a fragment of the horizontal ramus of a left edentulous dentary with five alveoli, the distal four of which are plugged with broken roots. Based on the morphologies of the dentary and the roots, it is considered to be of a therian mammal. This constitutes the first discovery of a Mesozoic mammal in northeastern Japan and highlights the potential for future mammal discoveries in the Cretaceous System in northeastern Japan, which will be significant for disclosure of the mammalian faunal evolution in East Asia during the Late Cretaceous.  相似文献   
49.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   
50.
Abstract In order to make geophysical and geological investigations of the Nojima Fault on Awaji Island, Japan, three boreholes measuring 1800 m, 800 m and 500 m deep were drilled into the fault zone. The fault is one of the seismic source faults of the 1995 Hyogo-ken Nanbu earthquake of M 7.2. A new multicomponent borehole instrument was installed at the bottom of the 800 m borehole and continuous observations of crustal strain and tilt have been made using this instrument since May 1996. A high-pressure water injection experiment within the 1800 m borehole was done in February and March 1997 to study the geophysical response, behavior, permeability, and other aspects of the fault zone. The injection site was located approximately 140 m horizontally and 800 m vertically from the instrument. Associated with the water injection, contraction of approximately 0.7 × 10−7 str (almost parallel to the fault) and tilt of approximately 1 × 10-7 rad in the sense of upheaval toward the injection site were observed. In addition to these controlled experiments, the strainmeter and tiltmeter also recorded daily variations. We interpret strain and tilt changes to be related to groundwater discharge and increased ultra-micro seismicity induced by the injected water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号