首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   6篇
  国内免费   1篇
大气科学   12篇
地球物理   14篇
地质学   30篇
海洋学   8篇
天文学   53篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   7篇
  2013年   13篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
81.
A model of core formation is presented that involves the Earth accreting heterogeneously through a series of impacts with smaller differentiated bodies. Each collision results in the impactor's metallic core reacting with a magma ocean before merging with the Earth's proto-core. The bulk compositions of accreting planetesimals are represented by average solar system abundances of non-volatile elements (i.e. CI-chondritic), with 22% enhancement of refractory elements and oxygen contents that are defined mainly by the Fe metal/FeO silicate ratio. Based on an anhydrous bulk chemistry, the compositions of coexisting core-forming metallic liquid and peridotitic silicate liquid are calculated by mass balance using experimentally-determined metal/silicate partition coefficients for the elements Fe, Si, O, Ni, Co, W, Nb, V, Ta and Cr. Oxygen fugacity is fixed by the partitioning of Fe between metal and silicate and depends on temperature, pressure and the oxygen content of the starting composition. Model parameters are determined by fitting the calculated mantle composition to the primitive mantle composition using least squares minimization. Models that involve homogeneous accretion or single-stage core formation do not provide acceptable fits. In the most successful models, involving 24 impacting bodies, the initial 60–70% (by mass) of the Earth accretes from highly-reduced material with the final 30–40% of accreted mass being more oxidised, which is consistent with results of dynamical accretion simulations. In order to obtain satisfactory fits for Ni, Co and W, it is required that the larger (and later) impactor cores fail to equilibrate completely before merging with the Earth's proto-core, as proposed previously on the basis of Hf-W isotopic studies. Estimated equilibration conditions may be consistent with magma oceans extending to the core–mantle boundary, thus making core formation extremely efficient. The model enables the compositional evolution of the Earth's mantle and core to be predicted throughout the course of accretion. The results are consistent with the late accretion of the Earth's water inventory, possibly with a late veneer after core formation was complete. Finally, the core is predicted to contain ~ 5 wt.% Ni, ~ 8 wt.% Si, ~ 2 wt.% S and ~ 0.5 wt.% O.  相似文献   
82.
A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database . The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off‐center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE–SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20–25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well‐understood, traditional shock evidence.  相似文献   
83.
84.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   
85.
This paper focuses on the impacts of debris cover on ice melt with regards to lithology and grain size. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of different natural material. For each plot, values of thermal conductivity were determined. The observations revealed a clear dependence of the sub‐debris ice melt on the layer thickness, grain size, porosity and moisture content. For the sand fraction the moisture content played a dominant role. These test fields were water saturated most of the time, resulting in an increased thermal conductivity. Highly porous volcanic material protected the ice much more effectively from melting than similar layer thicknesses of the local mica schist. However, the analysis of thermal diffusivities demonstrated that the vertical moisture distribution of the debris cover must be taken into consideration, with the diffusivity values being significantly lower in deeper layers.  相似文献   
86.
Farrugia  C. J.  Harris  B.  Leitner  M.  Möstl  C.  Galvin  A. B.  Simunac  K. D. C.  Torbert  R. B.  Temmer  M. B.  Veronig  A. M.  Erkaev  N. V.  Szabo  A.  Ogilvie  K. W.  Luhmann  J. G.  Osherovich  V. A. 《Solar physics》2012,281(1):461-489

We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007?–?2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A. We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfvén Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind–magnetosphere interactions. We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3±0.9 mV?m?1 and a CPCP of 37.3±20.2 kV. The auroral activity is closely correlated to the prevalent stream–stream interactions. We suggest that the Alfvén wave trains in the fast streams and Kelvin–Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey. We use the same numerical approach as in Fairfield’s (J. Geophys. Res. 76, 7600, 1971) empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R E and 14.35 R E, respectively. When comparing with Fairfield’s (1971) classic result, we find that the subsolar magnetosheath is thinner by ~1 R E. This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield’s model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.

  相似文献   
87.
88.
We investigate the interaction of three consecutive large-scale coronal waves with a polar coronal hole, simultaneously observed on-disk by the Solar TErrestrial Relations Observatory (STEREO)-A spacecraft and on the limb by the PRoject for On-Board Autonomy 2 (PROBA2) spacecraft on 27 January 2011. All three extreme ultraviolet (EUV) waves originate from the same active region, NOAA 11149, positioned at N30E15 in the STEREO-A field of view and on the limb in PROBA2. For the three primary EUV waves, we derive starting velocities in the range of ≈?310 km?s?1 for the weakest up to ≈?500 km?s?1 for the strongest event. Each large-scale wave is reflected at the border of the extended coronal hole at the southern polar region. The average velocities of the reflected waves are found to be smaller than the mean velocities of their associated direct waves. However, the kinematical study also reveals that in each case the ending velocity of the primary wave matches the initial velocity of the reflected wave. In all three events, the primary and reflected waves obey the Huygens–Fresnel principle, as the incident angle with ≈?10° to the normal is of the same magnitude as the angle of reflection. The correlation between the speed and the strength of the primary EUV waves, the homologous appearance of both the primary and the reflected waves, and in particular the EUV wave reflections themselves suggest that the observed EUV transients are indeed nonlinear large-amplitude MHD waves.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号