首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   1篇
测绘学   10篇
大气科学   2篇
地球物理   6篇
地质学   20篇
海洋学   3篇
天文学   6篇
自然地理   2篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2010年   2篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有49条查询结果,搜索用时 93 毫秒
31.
Sutar  Anup K.  Roy  Sukanta  Tiwari  V. M. 《Journal of Seismology》2021,25(5):1265-1279
Journal of Seismology - The Koyna-Warna region in western India is well known around the globe for recurrent reservoir-triggered seismicity soon after the impoundment of the Koyna and Warna...  相似文献   
32.
Seismic tomography is an effective means of estimating velocity and structure from multichannel seismic (MCS) reflection data. In this study we have followed a 2D approach to arrive at the probable velocity field configuration from multichannel seismic data and infer the presence of gas hydrates/free-gas in the offshore Kerala-Konkan region, along the eastern part of a seismic line on which a bottom simulating reflector (BSR) has previously been identified. Tomographic modeling consists of the identification of reflection phases and picking of respective travel times for various source-receiver positions. These picks were then utilized to arrive at a 2D velocity field following a forward and inversion approach using a ray tracing technique. The modeling for the first time brought out the finer scale velocity structure under the region of investigation. Modeling through the 2D approach shows lateral variation in velocity field along the studied segment of the seismic line. The results indicate a thin (∼50–60 m) sedimentary cover with velocity ranging from 1,770 to 1,850 m/s. A sedimentary layer with high P-wave velocity 1,980–2,100 m/s below the sea floor was interpreted as the hydrate layer. The thickness of this layer varies between 110 and 140 m. The hydrate layer is underlain by a low-velocity layer having velocities in the range 1,660–1,720 m/s. This low velocity may represent a free gas layer, whose thickness varies between 50 and 100 m located below the hydrated layer. The investigation suggests the occurrence of gas hydrate underlain by free gas in some parts of the Kerala-Konkan offshore region.  相似文献   
33.
In seismic sections, the presence of a gas hydrate stability zone (GHSZ) is often marked by a bottom-simulating reflector, which has a negative polarity with respect to the seafloor. The present study reveals the response of seismic wave characteristics and amplitude versus offset (AVO) effects of large offset compressional (P) and converted (PS) waves for a GHSZ/free-gas configuration, using a two-dimensional elastic anisotropic modelling technique. The modelling results would provide a priori information, which allows unique determination of parameters of seismic models for the design of ocean bottom seismometer experiments over continental margins for the purpose of gas hydrate exploration. The AVO analyses on long offset P and PS waves based on synthetic data yield a typical gas hydrate/free-gas response, as the reflectivity increases with incidence angle.  相似文献   
34.
This study reports for the first-time the ambient concentrations of HULIS mass (HULIS-OM, Humic-like substances) and HULIS-C (carbon) in PM10 (particulate matter with aerodynamic diameter?≤?10 μm) from the Indo-Gangetic Plain (IGP at Kanpur, wintertime). HULIS extraction followed by purification and isolation protocol with methanol: acetonitrile (1:1 v/v) on HLB (Hydrophilic-Lipophilic Balanced) cartridge has been established. Quantification of HULIS-C was achieved on a total organic carbon (TOC) analyser whereas HULIS-OM was determined gravimetrically. Consistently high recovery (> 90%) of HULIS-C based on analysis of Humic standard (sodium salt of Humic acid) suggested suitability of our established analytical protocol involving solvent extraction, purification and accurate quantification of HULIS. HULIS-OM varied from 17.3–38 μg m?3 during daytime and from 19.8–40.6 μg m?3 during night in this study. During daytime the HULIS-OM constituted 20–30% mass fraction of OMTotal and 10–15% of PM10 mass. However, a relatively low contribution of HULIS-OM has been observed during the night. This observation has been attributed to higher concentrations of OM and PM10 in night owing to nighttime chemical reactivity and condensation of organics in conjunction with shallower planetary boundary layer height. Strong correlation of HULIS-C with K+BB (R2?>?0.80) and significant day-night variability of HULIS-C/WSOC ratio in conjunction with air-mass back trajectories (showing transport of pollutants from upwind IGP) suggest biomass burning emission and secondary transformations as important sources of HULIS over IGP. High-loading of atmospheric PM10 (as high as 440 μg m?3) with significant contribution of water-soluble organic aerosols (WSOC/OC: ~ 0.40–0.80) during wintertime highlights their plausible potential role in fog and haze formation and their impact on regional-scale atmospheric radiative forcing over the IGP.  相似文献   
35.
36.
37.
Suryawanshi  Anup  Ghosh  Debraj 《Natural Hazards》2015,75(2):1435-1449
Natural Hazards - High wind poses a number of hazards in different areas such as structural safety, aviation, and wind energy—where low wind speed is also a concern, pollutant transport, to...  相似文献   
38.
In this study, we have prepared an intensity map based on macroseismic survey and all the available information from print and electronic media of damage and other effects due to March 05, 2012, M 4.9 Bahadurgarh (Haryana–Delhi border) earthquake and interpreted them to obtain modified Mercalli intensities (MMI) at over 62 locations surrounding the Haryana and Delhi. We have cross-checked the damage information from print and electronic media in the field at 25 sites within 110 km surrounding the epicenter for validation. Based on the questionnaire which is used in macroseismic survey and personal judgment, intensities were assigned accordingly as per physical survey at 25 sites and for rest based on media reporting. A maximum intensity of VI was assigned to this seismic event. Isoseismals of V and VI have been fully covered in the field observations. Beside this, some of the points have also been covered for isoseismal IV and isoseismal III and rest are based on media report only. The intensity map reveals several interesting features. Elliptically elongated shape of intensity map shows that most of the slightly damaged areas are concentrated toward the northwestern side of the epicenter having intensity V which may be due to directivity or site effects. A regression relation has also been derived between intensity and epicentral distance. The derived attenuation relation will be useful for assessing damage of a potential future earthquake (earthquake scenario–based planning purposes) for the Delhi NCR region.  相似文献   
39.
The present paper is concerned with the propagation of torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space. We assume the quadratic inhomogeneity in rigidity and density in the lower half-space and irregularity is taken in the form of rectangle at the interface separating the layer from the lower half-space. The dispersion equation for torsional waves has been obtained in a closed form. Velocity equation is also obtained in the absence of irregularity. The study reveals that the presence of irregularity, initial stress, porosity, inhomogeneity and anisotropy factor in the dispersion equation approves the significant effect of these parameters in the propagation of torsional waves in porous medium. It has also been observed that for a uniform media, the velocity equation reduces to the classical result of Love wave.  相似文献   
40.
Two moderate earthquakes of Mw 5.7 on the first of May and Mw 5.2 on the second of August occurred in the Kishtwar region in the year 2013. Our broadband seismic observatories located in the region recorded these events and the aftershocks. We analyzed these data to understand the seismotectonics of this region. Most of the events were located between 33.03° to 33.29° N latitude and 75.40° to 76.07° E longitude. Focal depths of these shallow earthquakes range from 7 to 12 km and are confined between Panjal Thrust (PT) and Kishtwar Window (KW). Spectral analysis of these events reveals that stress drop, source radius, corner frequency, and moment magnitude varied between 3.3 and 70.1 bars, 0.121 and 3.55 km, 0.397 and 6.06 Hz, and Mw 2.2 and Mw 5.7, respectively. The low stress drop of small-magnitude earthquakes reveals the brittle nature of the upper crust which is coincident with the field observations. The variation of stress drop with magnitude shows positive correlation whereas no such relation was observed between stress drop and depth of focus. The b value calculated (0.83) for the area reveals high stress accumulation within the incompetent rock zones in the area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号