The contamination levels of soils and water resources in Calabar, Nigeria have been investigated using resistivity (vertical electrical sounding and electrical resistivity tomography), geochemical analyses of soil and water resources and textural analysis. Sixty randomly sited VES sites were investigated in two seasons while ERT investigations were performed along four profiles. The geochemical investigations were spread across seasons in order to track seasonal changes in physico-chemical parameters: hydrogen ion concentration (pH), electrical conductivity, total dissolved solids, chloride ion (Cl?), nitrate ion (\( {\text{NO}}_{ 3}^{ - } \)), bicarbonate (\( {\text{HCO}}_{ 3}^{ - } \)), sulphate ion (\( {\text{SO}}_{ 4}^{2 - } \)), calcium ion (Ca2+), sodium ion (Na+), potassium ion (K+) and magnesium ion (Mg2+). Additionally, concentrations of ammonium, aluminium and nitrite ions in soils were determined. Results show that ionic concentrations in the sand-dominated soils and water are within permissible limits and baseline standards. The resistivities follow known trends in the area. However, at the central waste disposal site, a localised thin (< 5 m), low resistivity (< 15 Ωm) anomaly suspected to be due to contamination by leachates was observed. Comparatively, the contaminated area is also characterised by marginal increase in ionic concentrations. Strong attenuation capacities of overlying and adjoining clay/lateritic sediments and optimal design of the waste dump site probably reduced the spread of contaminants. The contaminated zone need to be closely monitored so that it does not extend to the aquifers. Hence, all strategies presently being used in managing wastes in Calabar should be sustained. 相似文献
This study evaluated the Cretaceous (Campanian–Maastrichtian) kaolinitic sediments of the Ajali/Mamu and Enugu/Nkporo Formations from the Lower Benue Trough of Nigeria. A combined method of inductively coupled plasma–mass spectrometry and isotope ratio mass spectrometry was used to investigate trace and rare-earth element geochemistry and hydrogen and oxygen isotopic compositions. These data were then used to infer the sediments’ provenance and paleoclimatic conditions during their deposition. The sediments contained low concentrations of most trace elements, with the exceptions of Zr (651–1352 ppm), Ba (56–157 ppm), V (38–90 ppm), and Sr (15.1–59.6 ppm). Average values of Co and Ni were 1.5 and 0.7 ppm, respectively. Trace and rare earth element values were lower than corresponding values for upper continental crust and Post-Archean Australian Shale, with the exception of Zr. The samples showed only slight light rare-earth enrichment and nearly flat heavy rare-earth depletion patterns, with negative Eu and Tm anomalies, typical of felsic sources. Geochemical parameters such as La/Sc, Th/Sc, and Th/Co ratios support that the kaolinitic sediments were derived from a felsic rock source, likely deposited in an oxic environment. 18O values ranged from + 15.4 to + 21.2‰ for the investigated samples, consistent with a residual material derived from chemical weathering of felsic rock and redeposited in a sedimentary basin (typical values of + 19 to + 21.2‰). While in the basin, the sediments experienced extended interactions with meteoric water enriched in δD and δ16O. However, the variation in δD and δ16O values for the investigated samples is attributed to the high temperature of formation (54–91 °C). The δD and δ18O values suggest that the sediments, although obtained from different localities within the Lower Benue Trough, formed under similar hot, tropical climatic conditions.
Taiwan is an active mountain belt formed by oblique collision between the Luzon arc and the Asian continent. Regardless of the ongoing collision in central and southern Taiwan, a post-collisional extension regime has developed since the Plio–Pleistocene in the northern part of this orogen, and led to generation of the Northern Taiwan Volcanic Zone. Emplaced at 0.2 Ma in the southwest of the Volcanic Zone, lavas from the Tsaolingshan volcano are highly magnesian (MgO≈15 wt.%) and potassic (K2O≈5 wt.%; K2O/Na2O≈1.6–3.0). Whereas these basic rocks (SiO2≈48 wt.%) have relatively low Al2O3≈12 wt.%, total Fe2O3≈7.5 wt.% and CaO≈7.2 wt.%, they are extremely enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, Ba, Th and U). The Rb and Cs abundances, >1000 and 120 ppm, respectively, are among the highest known from terrestrial rocks. In addition, these rocks are enriched in light rare earth elements (LREE), depleted in high field strength elements (HFSE), and display a positive Pb spike in the primitive mantle-normalized variation diagram. Their REE distribution patterns mark with slight Eu negative anomalies (Eu/Eu*≈0.90–0.84), and Sr and Nd isotope ratios are uniform (87Sr/86Sr≈0.70540–0.70551; 143Nd/144Nd≈0.51268–0.51259). Olivine, the major phenocryst phase, shows high Fo contents (90.4±1.8; 1σ deviation), which are in agreement with the whole rock Mg-values (83–80). Spinel inclusions in olivine are characterized by high Cr/Cr+Al ratios (0.94–0.82) and have compositions similar to those from boninites that originate from highly refractory peridotites. Such petrochemical characteristics are comparable to the Group I ultrapotassic rocks defined by Foley et al. [Earth-Sci. Rev. 24 (1987) 81], such as orogenic lamproites from central Italy, Span and Tibet. We therefore suggest that the Tsaolingshan lavas resulted from a phlogopite-bearing harzburgitic source in the lithospheric mantle that underwent a recent metasomatism by the nearby Ryukyu subduction zone processes. The lavas exhibit unique incompatible trace element ratios, with Rb/Cs≈8, Ba/Rb≈1, Ce/Pb≈2, Th/U≈1 and Nb/U≈0.8, which are significantly lower than the continental crust values and those of most mantle-derived magmas. Nonmagmatic enrichment in the mantle source is therefore required. Based on published experimental data, two subduction-related metasomatic components, i.e., slab-released hydrous fluid and subducted sediment, are proposed, and the former is considered to be more pervasive for causing the extraordinary trace element ratios observed. Our observations lend support to the notion that dehydration from subducting slabs at convergent margins, as a continuing process through geologic time, can account for the fractionation of these elemental pairs between the Earth's crust and mantle. 相似文献
Industrial decentralisation (ID) has been a central component of South Africa's regional strategy for over twenty years. Until recently, though, the programme has evinced little interest amongst industrialists. The fact that ID policy has been premised upon political rather than economic considerations has been thought to lie at the root of this failure. Following recent developments, however, this view is being reassessed. The reorganisation of ID policy in 1982 and the dramatic acceleration in the rate of industrial relocations that this reorganisation appears to have induced, has led theorists to revise their thinking on both the economic and political imperatives underpinning the programme. The purpose of this paper is to review the debates that are now developing concerning ID in South Africa, and to suggest where further research and analysis might be most profitably directed. 相似文献
Guinea worm and other water borne diseases associated with untreated surface water use have necessitated that communities are supplied with groundwater in the Northern Region of Ghana. The Electrical Resistivity Survey (ERS) method is one of the common geophysical survey techniques used for borehole siting in Ghana. Various groundwater exploration programs have utilized it by employing the four electrode system. However, the ERS has not been able to locate potential borehole sites successfully in the Voltaian Sedimentary Basin (VSB) in the Northern Region of Ghana although it has been successful in other geological formations. Unsatisfactory results obtained from the employment of the ERS system in the VSB therefore necessitated an experiment with the 2-D Multi-Electrode Resistivity Imaging (2-D MERI) technique. Field results show that the 2-D MERI is a robust and efficient technique: an improvement on the four electrode ERS system in terms of amount and quality of data obtained. The 2-D MERI interpretations were confirmed with a much improved borehole drilling success rate of 60% compared to 38% obtained using the ERS within the mudstone and shale formations. The 2-D MERI also indicated that very low resistivity layers in the VSB may not necessarily be good targets for borehole drilling and the generally held notion that groundwater cannot be found at depths more than 25 m is no longer tenable. 相似文献
Vegetation change, fi-om grassland to shrubland, has occurred over much of the Sonoran and Chihuahuan Deserts during the past century. The effect of this vegetation change on interrill runoff and erosion was examined by conducting rainfall-simulation experiments on large runoff plots on contemporary grassland and shrubland hillslopes. These experiments show that, compared to the grassland, the interrill portions of shrubland hillslopes (1) have higher runoff rates, (2) experience equilibrium runoff conditions much more frequently, (3) exhibit higher overland flow velocities, and (4) are subject to greater rates of erosion. The environmental change that has led to the vegetation change has been relatively minor, but its geomorphic impact has been substantial. 相似文献