首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
测绘学   1篇
大气科学   6篇
地球物理   10篇
地质学   27篇
海洋学   4篇
天文学   1篇
自然地理   2篇
  2024年   1篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  1998年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   
32.
Aquifer thermal energy storage may result in increases in the groundwater temperature up to 70 °C and more. This may lead to geochemical and microbiological alterations in the aquifer. To study the temperature effects on the indigenous microbial community composition, sediment column experiments at four different temperatures were carried out and the effluents were characterized geochemically and microbiologically. After an equilibrium phase at groundwater temperature of 10 °C for 136 days, one column was kept at 10 °C as a reference and the others were heated to 25, 40 and 70 °C. Genetic fingerprinting and quantitative PCR revealed a change in the bacterial community composition and abundance due to the temperature increase. While at 25 °C only slight changes in geochemical composition and gene copy numbers for bacteria were observed, increasing concentrations of total organic carbon in the 40 °C column were followed by a strong increase in bacterial abundance. Thermophilic bacteria became dominant at 70 °C. Temporary sulfate reduction took place at 40 and 70 °C and this correlated with an increased abundance of sulfate-reducing bacteria (SRB). Furthermore, a coexistence of SRB and sulfur-oxidizing bacteria (SOB) at all temperatures indicated an interaction of these physiological groups in the sediments. The results show that increased temperatures led to significant shifts in the microbial community composition due to the altered availability of electron donors and acceptors. The interplay of SRB and SOB in sedimentary biofilms facilitated closed sulfur cycling and diminished harmful sulfur species.  相似文献   
33.
The results of a series of high-resolution numerical experiments are used to test and compare three nonlinear models for high-concentration-gradient dispersion. Gravity stable miscible displacement is considered. The first model, introduced by Hassanizadeh, is a modification of Fick’s law which involves a second-order term in the dispersive flux equation and an additional dispersion parameter β. The numerical experiments confirm the dependency of β on the flow rate. In addition, a dependency on travelled distance is observed. The model can successfully be applied to nearly homogeneous media (σ2 = 0.1), but additional fitting is required for more heterogeneous media.The second and third models are based on homogenization of the local scale equations describing density-dependent transport. Egorov considers media that are heterogeneous on the Darcy scale, whereas Demidov starts at the pore-scale level. Both approaches result in a macroscopic balance equation in which the dispersion coefficient is a function of the dimensionless density gradient. In addition, an expression for the concentration variance is derived. For small σ2, Egorov’s model predictions are in satisfactory agreement with the numerical experiments without the introduction of any new parameters. Demidov’s model involves an additional fitting parameter, but can be applied to more heterogeneous media as well.  相似文献   
34.
35.
This study investigates the distribution of macrozoobenthos in relation to meso-scale bedforms in the southern North Sea. Three sites on the Dutch Continental Shelf were sampled that are representative of large areas of the North Sea and show diverse morphological settings. These sites are (i) part of a shoreface-connected ridge, (ii) the lower part of a concave shoreface and (iii) a sandwave area. Within these sites, two or three different morphological units were distinguished. Sampling was undertaken in two seasons for two consecutive years. The species composition was analysed for differences in benthic assemblage within sites, based on the meso-scale morphology, and between sites and seasons. In addition, the benthic assemblage was correlated to water depth, median grain size (D50) and sorting (D60/D10). Results show that significant differences in the benthic assemblage can be found related to meso-scale bedforms, but macro-scale morphological setting and seasonal effects are more important.  相似文献   
36.
37.
Soil water content is a key variable for biogeochemical and atmospheric coupled processes. Its small‐scale heterogeneity impacts the partitioning of precipitation (e.g., deep percolation or transpiration) by triggering threshold processes and connecting flow paths. Forest hydrologists frequently hypothesized that throughfall and stemflow patterns induce soil water content heterogeneity, yet experimental validation is limited. Here, we pursued a pattern‐oriented approach to explore the relationship between net precipitation and soil water content. Both were measured in independent high‐resolution stratified random designs on a 1‐ha temperate mixed beech forest plot in Germany. We recorded throughfall (350 locations) and stemflow (65 trees) for 16 precipitation events in 2015. Soil water content was measured continuously in topsoil and subsoil (210 profiles). Soil wetting was only weakly related to net precipitation patterns. The precipitation‐induced pattern quickly dissipates and returns to a basic pattern, which is temporally stable. Instead, soil hydraulic properties (by the proxy of field capacity) were significantly correlated with this stable soil water content pattern, indicating that soil structure more than net precipitation drives soil water content heterogeneity. Also, both field capacity and soil water content were lower in the immediate vicinity of tree stems compared to further away at all times, including winter, despite stemflow occurrence. Thus, soil structure varies systematically according to vegetation in our site. We conclude that enhanced macroporosity increases gravity‐driven flow in stem proximal areas. Therefore, although soil water content patterns are little affected by net precipitation, the resulting soil water fluxes may strongly be affected. Specifically, this may further enhance the channelling of stemflow to greater depth and beyond the rooting zone.  相似文献   
38.
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs.  相似文献   
39.
The outbreak of COVID-19 raised numerous questions on the interactions between the occurrence of new infections, the environment, climate and health. The European Union requested the H2020 HERA project which aims at setting priorities in research on environment, climate and health, to identify relevant research needs regarding Covid-19. The emergence and spread of SARS-CoV-2 appears to be related to urbanization, habitat destruction, live animal trade, intensive livestock farming and global travel. The contribution of climate and air pollution requires additional studies. Importantly, the severity of COVID-19 depends on the interactions between the viral infection, ageing and chronic diseases such as metabolic, respiratory and cardiovascular diseases and obesity which are themselves influenced by environmental stressors. The mechanisms of these interactions deserve additional scrutiny. Both the pandemic and the social response to the disease have elicited an array of behavioural and societal changes that may remain long after the pandemic and that may have long term health effects including on mental health. Recovery plans are currently being discussed or implemented and the environmental and health impacts of those plans are not clearly foreseen. Clearly, COVID-19 will have a long-lasting impact on the environmental health field and will open new research perspectives and policy needs.  相似文献   
40.
Numerical modeling of interacting flow and transport processes between different hydrological compartments, such as the atmosphere/land surface/vegetation/soil/groundwater systems, is essential for understanding the comprehensive processes, especially if quantity and quality of water resources are in acute danger, like e.g. in semi-arid areas and regions with environmental contaminations. The computational models used for system and scenario analysis in the framework of an integrated water resources management are rapidly developing instruments. In particular, advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. It is certainly true that for each hydro-compartment, there exists many excellent simulation codes, but traditionally their development has been isolated within the different disciplines. A new generation of coupled tools based on the profound scientific background is needed for integrated modeling of hydrosystems. The objective of the IWAS-ToolBox is to develop innovative methods to combine and extend existing modeling software to address coupled processes in the hydrosphere, especially for the analysis of hydrological systems in sensitive regions. This involves, e.g. the provision of models for the prediction of water availability, water quality and/or the ecological situation under changing natural and socio-economic boundary conditions such as climate change, land use or population growth in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号