首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   4篇
  国内免费   2篇
测绘学   19篇
大气科学   11篇
地球物理   42篇
地质学   115篇
海洋学   2篇
天文学   38篇
自然地理   4篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2018年   17篇
  2017年   21篇
  2016年   11篇
  2015年   9篇
  2014年   17篇
  2013年   20篇
  2012年   8篇
  2011年   10篇
  2010年   11篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
排序方式: 共有231条查询结果,搜索用时 19 毫秒
101.
Submarine groundwater discharge (SGD) introduces solute and nutrients to the global oceans, resulting in considerable nutrient cycling and dynamics in the coastal areas. We have conducted high‐resolution, spatio‐temporal, lunar tidal cycle patterns and variability of discharged solute/nutrient assessment to get an overview of seasonal nutrient flux to the Bay of Bengal in eastern parts of the Indian subcontinent. Whereas the premonsoon season SGD was found to be dominant in the marine influence (M‐SGD), the postmonsoon season was found to be predominated by the terrestrial component of SGD (T‐SGD), extending from coast to near offshore. The solute fluxes and redox transformation were found to be extensively influenced by tidal and diurnal cycles, overlapping on seasonal patterns. We have assessed the possible role of SGD‐associated solute/nutrient fluxes and their discharge mechanisms, and their associated temporal distributions have severe implications on the biological productivity of the Bay of Bengal. The estimated annual solute fluxes, using the average end‐member concentration of the SGD‐associated nutrients, were found to be 240 and 224 mM·m?2·day?1 for NO3? and Fetot, respectively. Together with huge freshwater flux from the Himalayan and Peninsular Indian rivers, the SGD has considerable influence on the bay water circulation, stratification, and solute cycling. Thus, the observation from this study implies that SGD‐associated nutrient flux to the Bay of Bengal may function as a nutrient sink, which might influence the long‐term solute/nutrient flux along the eastern coast of India.  相似文献   
102.
103.
Nonlinear time series analysis methods are used to investigate the dynamics of mechanical and convective turbulences in the atmospheric surface layer flow. Using dynamical invariant analysis (e.g. correlation dimension, Lyapunov exponent and mutual information) along with recurrence quantification analysis (e.g. recurrent rate, determinism, average diagonal length of recurrence plot, etc.) of the vertical wind component data, it is confirmed that a convective turbulence is a lower order manifold in its phase space exhibiting higher degree of organization than a mechanical turbulence. Applying a quasi-one-dimensional chaotic return map technique, the topological differences between the mechanical and convective turbulences are explored. These quasi-one-dimensional return maps are produced using the local maxima of the first principal component of the reconstructed turbulence data. A comparison of the probability distribution of the local maxima of a forced Lorenz model with the turbulence data indicates the possible existence of a stable fixed point for both type of turbulences. Furthermore, dynamically the mechanical turbulence is found to resemble an unforced Lorenz model whereas the convective turbulence resembles a forced Lorenz model.  相似文献   
104.
At Bangriposi, variable stages in replacement of staurolite by chloritoid – Na–K–Ca mica shimmer aggregates in muscovite schists provides insight into the complex interplay between fluid flow, mass transfer, and dissolution–precipitation during pseudomorph growth. Idioblastic chloritoid growing into mica caps without causing visible deformation, and monomineralic chloritoid veins (up to 300 μm wide) within shimmer aggregates replacing staurolite attest to chloritoid nucleation in fluid‐filled conduits along staurolite grain boundaries and crystallographic planes. The growth of shimmer aggregates initiated along staurolite margins, and advanced inwards into decomposing staurolite along networks of crystallographically controlled fluid‐filled conduits. Coalescence among alteration zones adjacent to channel fills led to dismemberment and the eventual demise of staurolite. Mass balance calculation within a volume‐fixed, silica‐conserved reference frame indicate the shimmer aggregates grew via precipitation from fluids in response to mass transport that led to the addition of H2O, K2O, Na2O and CaO in the reaction zone, and Al2O3 was transported outward from the inward‐retreating margin of decomposing staurolite. This aided precipitation of chloritoid in veins and in the outer collars, and as disseminated grains in the shimmer aggregates at mid‐crustal condition (~520 ± 20 °C, 5.5 ± 2.0 kbar). Computation using one‐dimensional transport equation suggests that staurolite decomposition involved advection dominating over diffusive transport; the permeation of externally derived H2O caused flattening of chemical potential gradients in H2O and aqueous species, for example, and , computed using the Gibbs method. This suggests that staurolite decomposition was promoted by the infiltration of a large volume of H2O that flattened existing chemical potential gradients. In the initial stages of replacement, chloritoid super‐saturation in fluid caused preferential nucleation and growth of chloritoid at staurolite grain boundaries and in crystallographic planes. As reaction progressed, further chloritoid nucleation was halted, but chloritoid continued to grow as the 3‐mica aggregates continued to replace the remaining staurolite in situ, while the chloritoid‐compatible elements were transported in the water‐rich phase facilitating continued growth of the existing chloritoid grains.  相似文献   
105.
The first documented interpretation of the regional-scale hydrostratigraphy and groundwater flow is presented for a ~21,000-km2 area of the arsenic-affected districts of West Bengal [Murshidabad, Nadia, North 24 Parganas and South 24 Parganas (including Calcutta)], India. A hydrostratigraphic model demonstrates the presence of a continuous, semi-confined sand aquifer underlain by a thick clay aquitard. The aquifer thickens toward the east and south. In the south, discontinuous clay layers locally divide the near-surface aquifer into several deeper, laterally connected, confined aquifers. Eight 22-layer model scenarios of regional groundwater flow were developed based on the observed topography, seasonal conditions, and inferred hydrostratigraphy. The models suggest the existence of seasonally variable, regional, north–south flow across the basin prior to the onset of extensive pumping in the 1970s. Pumping has severely distorted the flow pattern, inducing high vertical hydraulic gradients across wide cones of depression. Pumping has also increased total recharge (including irrigational return flow), inflow from rivers, and sea water intrusion. Consequently, downward flow of arsenic contaminated shallow groundwater appears to have resulted in contamination of previously safe aquifers by a combination of mechanical mixing and changes in chemical equilibrium.  相似文献   
106.
Nine basaltic lava-flows, which vary in thickness between 60 feet and 300 feet, were established in the NW Rajmahals. The flows were, at places, laid down one above the other and, at others, were found to contain intervening intertrappean horizons. All the flows are essentially of basaltic composition and are made up of labradoritie plagioclase, pigeonitic and augitic pyroxene, opaque ore, primary glass and secondary minerals (palagonite, secondary silica, calcite and zeolite). The phenocrystic plagioclase ranges in composition between An72 and An62, while the constituents of the groundmass range between An50 and An17. The microphenocrysts of pyroxene are mainly augitic and occasionally pigeonitic while the constituents of the groundmass are essentially pigeonitic. The opaque minerals are magnetite and ilmenite. Petrographically, the lava-flows are more or less similar to one another. The first three flows are, however, more remarkably porphyritic and a little coarser in grain size than the six overlying flows. The eighth flow is devoid of palagonite. Calcite occurs only in certain portions of the second flow. There is a gradual increase in the percentage of primary glass from the first to the ninth flow with a corresponding fall in the total percentage of plagioclase and pyroxene. Statistical analysis of the grain size variation in the plagioclases was carried out and the results were found to be directly related to the prevailing rates of cooling in the different flows and also in the different horizons of the same flow. Modal analysis of the nine flows (in all, 98 samples) was carried out and this brought out some interesting results. Samples from three of the flows were analysed chemically and the corresponding norms were calculated. The order of crystallisation of the primary constituents was established from petrographic and petrological studies. The basaltic magma, which gave rise to the lava-flows of this region, does not appear to have undergone any significant differentiation during the course of its cooling and consolidation. The only discernible effect of crystallisati on differentiation was an enrichment of silica (and, perhaps, alkalis) in the residual liquids and no noteworthy enrichment of iron appears to have occurred at any stage.  相似文献   
107.
The role of fractional crystallization in the descent: basalt trachyte is critically examined. For each simple basalt magma type — alkaline, critically undersaturated, and oversaturated — there is a possible trachyte derived by way of fractional crystallization. Olivine removal is the main physical control that may interfere with trachytic trends at low pressure. Higher pressures widen the field of the initial basic compositions from which alkaline trachytes may fractionate. Bowen's hypothesis of trachyte formation from an undercooled basic magma is not supported by recent experimental data. Inefficiency and lack of scope of the fractional crystallization process, in the late stage of differentiation, may lead to an excess of trachytes over trachyandesites. In general, more time, taken in the basic and the salic stages of the descent, due to steeper liquidus and solidus, would result in a greater abundance of the basic and the salic rock types, compared to the intermediate varieties.  相似文献   
108.
Thin-section studies of the Zanskar Shear Zone (ZSZ) rocks reveal a top-to-SW and subsequent primary and secondary top-to-NE ductile shearing; brittle–ductile and brittle extensions; top-to-SW brittle shear, steep normal faulting and fracturing. In the proposed two-phase model of ductile extrusion of the Higher Himalayan Shear Zone (HHSZ), a top-to-SW simple shearing during 22–18 Ma was followed by a combination of top-to-SW simple shear and channel flow at 18–16 Ma. The second phase simulates a thin ZSZ characterized by a top-to-NE shearing. The channel flow component ceased around 16 Ma, the extruding HHSZ entered the brittle regime but the top-to-SW shearing continued until perturbed by faults and fractures. Variation in the extrusion parameters led to variable thickness of the ZSZ. Shear strain after the extrusion is presumably maximum at the boundaries of the HHSZ and falls towards the base of the ZSZ, which crudely matches with the existing data. The other predictions: (1) spatially uniform shear strain after the first stage, (2) fastest extrusion rate at the base of the ZSZ, and (3) a lack of continuation of the ZSZ along the Himalayan trend are not possible to validate due to paucity of suitable data. Non-parabolic shear fabrics of the ZSZ indicate their heterogeneous deformation.  相似文献   
109.
The fluidization technique has been in use for particulate material processing operations for many years. It has been widely believed that the ratio of size and density of the particulate components controls the separation efficiency. In this paper, it is demonstrated that fluid velocity during fluidization could assume an overriding significance when an improvement in separation efficiency is required. This was at first experimentally established by analyzing simpler particulate systems, and later a simulation scheme was adopted to study a wider range of particulate systems. The numerical scheme known as the discrete element method (DEM), that incorporates both the solid- and hydro-dynamic components of the interactive forces, served as an important tool in understanding the separation behavior of binary particulate systems in fluidized beds. It has been established that mere fluidization does not necessarily guarantee an optimal separation, especially when the particles differ widely in density and size.  相似文献   
110.
An urban area comprises a complex mix of diverse land cover types and materials. Urban ecology and environment is significantly influenced by the proportion of impervious cover that is increasing considerably with time due to the continuous influx of people into urban areas. Therefore, it is of vital importance to determine the spatiotemporal pattern and magnitude of urbanization. In the present study, we have employed a supervised backpropagation neural network in order to extract the impervious features using five spectral indices, such as one vegetation index—Soil-Adjusted Vegetation Index (SAVI), one water index—Modified Normalized Water Index (MNDWI), and three urban indices—Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Index-Based Built-up Index (IBI). The study has been performed using Landsat Thematic Mapper data of November, 2011, of the rapidly urbanizing city of Ranchi, capital of Jharkhand state, India. Using different combinations of these spectral indices while keeping SAVI and MNDWI constant, seven composite images were built, and from each of these composites, impervious features were classified and its accuracy assessed with reference to high-resolution images provided by Microsoft Bing Imagery and adequate ground truthing. It was observed that along with SAVI and MNDWI, whenever IBI was used in any combination, it decreased the classification efficiency. On the other hand, NDBI and BUI, individually or when used together, discriminated the impervious features from the others with high accuracy with the combination of SAVI, MNDWI, and BUI achieving the highest accuracy of 90.14 %.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号