首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   7篇
  国内免费   2篇
测绘学   3篇
大气科学   36篇
地球物理   25篇
地质学   38篇
海洋学   9篇
天文学   14篇
综合类   1篇
自然地理   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
  2017年   4篇
  2016年   10篇
  2015年   5篇
  2014年   9篇
  2013年   19篇
  2012年   10篇
  2011年   8篇
  2010年   10篇
  2009年   17篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
81.
Although the north‐western coast of Western Australia is highly vulnerable to tropical cyclones and tsunamis, little is known about the geological imprint of historic and prehistoric extreme wave events in this particular area. Despite a number of site‐specific difficulties such as post‐depositional changes and the preservation potential of event deposits, both tropical cyclones and tsunamis may be inferred from the geomorphology and the stratigraphy of beach ridge sequences, washover fans and coastal lagoons or marshes. A further challenge is the differentiation between tsunami and storm deposits in the geological record, particularly where modern deposits and/or historical reports on the event are not available. This study presents a high‐resolution sedimentary record of washover events from the Ashburton River delta (Western Australia) spanning approximately the last 150 years. A detailed characterization of event deposits is provided, and a robust chronostratigraphy for the investigated washover sequence is established based on multi‐proxy sediment analyses and optically stimulated luminescence dating. Combining sedimentological, geochemical and high‐resolution optically stimulated luminescence data, event layers are assigned to known historical events and tropical cyclone deposits are separated from tsunami deposits. For the first time, the 1883 Krakatoa and 1977 Sumba tsunamis are inferred from sedimentary records of the north‐western part of Western Australia. It is demonstrated that optically stimulated luminescence applied in coastal sedimentary archives with favourable luminescence characteristics can provide accurate chronostratigraphies even on a decadal timescale. The results contribute to the data pool of tropical cyclone and tsunami deposits in Holocene stratigraphies; however, they also demonstrate how short‐lived sediment archives may be in dynamic sedimentary environments.  相似文献   
82.
We combined the focused ion beam sample preparation technique with polarized synchrotron‐based FTIR (Fourier transform infrared) spectroscopy, laser‐Raman spectroscopy, electron microprobe analysis (EMPA), and transmission electron microscope (TEM) analysis to identify and quantify structurally bound OH, F, Cl, and CO3 groups in fluorapatite from the Northwest Africa 2975 (NWA 2975) shergottite. In this study, the first FTIR spectra of the OH‐stretching region from a Martian apatite are presented that show characteristic OH‐bands of a F‐rich, hydroxyl‐bearing apatite. Depending on the method of apatite‐formula calculation and whether charge balance is assumed or not, the FTIR‐based quantification of the incorporated OH, expressed as wt% H2O, is in variably good agreement with the H2O concentration calculated from electron microprobe data. EMP analyses yielded between 0.35 and 0.54 wt% H2O, and IR data yielded an average H2O content of 0.31 ± 0.03 wt%, consistent with the lower range determined from EMP analyses. The TEM observations implied that the volatiles budget of fluorapatite is magmatic. The water content and the relative volatile ratios calculated for the NWA 2975 magma are similar to those established for other enriched or intermediate shergottites. It is difficult to define the source of enrichment: either Martian wet mantle or crustal assimilation. Comparing the environment of parental magma generation for NWA 2975 with the terrestrial mantle in terms of water content, it displays a composition intermediate between enriched and depleted MORB.  相似文献   
83.
In 1969, prior to the discovery of the subglacial Lake Vostok, an Askania Gs-11 gravimeter was operated at Vostok Station (78.466°S, 106.832°E; 3478 m asl) to observe tidal gravity variations. To gain a better understanding of the lake's tidal dynamics, we reanalyzed these data using a Bayesian Tidal Analysis Program Grouping method (BAYTAP-G and -L programs). The obtained phase leads for the semidiurnal waves M2 (6.6 ± 2.1°) and S2 (10.1 ± 4.2°) are more pronounced than those of the diurnal waves, among which the largest phase lead (for K1) was 5.0 ± 0.5°. The obtained δ factor for M2 was 0.890 ± 0.032, significantly less than the theoretical value of 1.16. For three global ocean tide models (NAO99b, FES2004, and TPXO6.2), the estimated load tides on waves Q1, O1, P1, K1, M2, and S2 range from 0.1–0.2 μGal (Q1 and S2) to 0.6–0.7 μGal (K1). The difference in amplitude among the three models is less than 0.14 μGal (M2), and the difference in phase is generally less than 10°. In calculating the residual tide vectors using the ocean models, the TPXO6.2 model generally gave the smallest residual amplitudes. Our result for the K1 wave was anomalously large (1.36 ± 0.25 μGal), while that for the M2 wave was sufficiently small (0.37 ± 0.17 μGal). The associated uncertainty is half that reported in previous studies. It is interesting that the residual K1 tide is approximately 90° phase-leaded, while the M2 tide is approximately 180° phase-leaded (delayed). Importantly, a similar reanalysis of data collected at Asuka Station (71.5°S, 24.1°E) gave residual tides within 0.2–0.3 μGal for all major diurnal and semidiurnal waves, including the K1 wave. Therefore, the anomalous K1 residual tide observed at Vostok Station must be linked to the existence of the subglacial lake and the nature of solid–ice–water dynamics in the region.  相似文献   
84.
Abstract– Hypervelocity (2.5–7.8 km s?1) impact experiments into sandstone were carried out to investigate the influence of projectile velocity and mass, target pore space saturation, target‐projectile density contrast, and target layer orientation on crater size and shape. Crater size increases with increasing projectile velocity and mass as well as with increasing target pore space saturation. Craters in water‐saturated porous targets are generally shallower and larger in volume and in diameter than craters from equivalent impacts into dry porous sandstone. Morphometric analyses of the resultant craters, 5–40 cm in diameter, reveal features that are characteristic of all of our experimental craters regardless of impact conditions (I) a large central depression within a fragile, light‐colored central part, and (II) an outer spallation zone with areas of incipient spallation. Two different mechanical processes, grain fragmentation and intergranular tensile fracturing, are recorded within these crater morphologies. Zone (I) approximates the shape of the transient crater formed by material compression, displacement, comminution, and excavation flow, whereas (II) is the result of intergranular tensile fracturing and spallation. The transient crater dimensions are reconstructed by fitting quadric parabolas to crater profiles from digital elevation models. The dimensions of this transient and of the final crater show the same trends: both increase in volume with increasing impact energy, and with increasing water saturation of the target pore space. The relative size of the transient crater (in percent of the final crater volume) decreases with increasing projectile mass and velocity, signifying a greater contribution of spallation on the final crater size when projectile mass and velocity are increased.  相似文献   
85.
SBAS orbit and satellite clock corrections for precise point positioning   总被引:2,自引:0,他引:2  
The quality of real-time GPS positions based on the method of precise point positioning (PPP) heavily depends on the availability and accuracy of GPS satellite orbits and satellite clock corrections. Satellite-based augmentation systems (SBAS) provide such corrections but they are actually intended to be used for wide area differential GPS with positioning results on the 1-m accuracy level. Nevertheless, carrier phase-based PPP is able to achieve much more accurate results with the same correction values. We applied SBAS corrections for dual-frequency PPP and compared the results with PPP obtained using other real-time correction data streams, for example, the GPS broadcast message and precise corrections from the French Centre National d’Etudes Spatiales and the German Deutsches Zentrum für Luft- und Raumfahrt. Among the three existing SBAS, the best results were achieved for the North American wide area augmentation system (WAAS): horizontal and vertical position accuracies were considerably smaller than 10 cm for static 24-h observation data sets and smaller than 30 cm for epoch-by-epoch solutions with 2 h of continuous observations. The European geostationary navigation overlay service and the Japanese multi-functional satellite augmentation system yield positioning results with biases of several tens of centimeters and variations larger by factors of 2–4 as compared to WAAS.  相似文献   
86.
Many brightest cluster galaxies (BCGs) at the centres of X-ray selected clusters exhibit clear evidence for recent star formation. However, studies of BCGs in optically selected clusters show that star formation is not enhanced when compared to control samples of non-BCGs of similar stellar mass. Here, we analyse a sample of 113 BCGs in low-redshift  ( z < 0.1)  , optically selected clusters, a matched control sample of non-BCGs, and a smaller sample of BCGs in X-ray selected clusters. We convolve the Sloan Digital Sky Survey images of the BCGs to match the resolution of the Galaxy Evolution Explorer ( GALEX ) data and we measure UV-optical colours in their inner and outer regions. We find that optically selected BCGs exhibit smaller scatter in optical colours and redder inner  NUV − r   colours than the control galaxies, indicating that they are a homogenous population with very little ongoing star formation. The BCGs in the X-ray selected cluster sample span a similar range in optical colours, but have bluer  NUV − r   colours. Among X-ray selected BCGs, those located in clusters with central cooling times of less than 1 Gyr are significantly bluer than those located in clusters where the central gas cooling times are long. Our main conclusion is that the location of a galaxy at the centre of its halo is not sufficient to determine whether or not it is currently forming stars. One must also have information about the thermodynamic state of the gas in the core of the halo.  相似文献   
87.
88.
This study focused on clogging processes and on the benthic microalgal and meiofaunal assemblage in the sandy littoral zone of Lake Tegel, which are significantly involved in bank filtration, in a long-term. Our approach combined field studies and “in situ” experiments to highlight the structure of the biological active filter zone as well as the mechanisms and effects of clogging in the interstices that influence the infiltration process.Campaigns to measure “in situ” infiltration rates and hydraulic potential were conducted monthly from March 2004 to April 2005. Meiofaunal abundances and fine particulate organic matter (FPOM) were determined every 6 weeks in freeze cores down to depths of 50 cm. In parallel, concentrations of carbon, nitrogen and chlorophyll a were measured in samples of unfrozen sediment cores, that were divided in 1-cm steps down to depths of ≥10 cm. Similar sediment profiles were generated for analysis of colloidal carbohydrates, extracellular polymeric substances (EPS) and proteins between December 2005 and June 2006. Electron microscopy was used to visualize biofilm structure. Long-term experiments with natural FPOM and melamine resin particles as fluorescent tracers were performed to study “in situ” particle retention and transport, respectively. Additionally seston input was quantified during a 1-week period in April 2005.Infiltration rates showed a high temporal and spatial variability, but were not correlated with hydraulic conductivities as hydraulic gradients changed a lot. Likewise a correlation between infiltration rates and hydraulic potentials was not observed, indicating clogging processes. These are triggered to a high extend by biological compounds. In addition, seston input and intermittent gas intrusion are considered to reduce the hydraulic conductivity considerably. No significant “in situ” transport of inert natural fluorescent tracers was observed. However, a complete and permanent clogging of the sandy sediment does not occur, and daily infiltration rates of 0.7-27 L m−2 h−1 (mean 9 L m−2 h−1) guarantee a sufficient water supply by bank filtration for decades.  相似文献   
89.
How will our estimates of climate uncertainty evolve in the coming years, as new learning is acquired and climate research makes further progress? As a tentative contribution to this question, we argue here that the future path of climate uncertainty may itself be quite uncertain, and that our uncertainty is actually prone to increase even though we learn more about the climate system. We term disconcerting learning this somewhat counter-intuitive process in which improved knowledge generates higher uncertainty. After recalling some definitions, this concept is connected with the related concept of negative learning that was introduced earlier by Oppenheimer et al. (Clim Change 89:155–172, 2008). We illustrate disconcerting learning on several real-life examples and characterize mathematically certain general conditions for its occurrence. We show next that these conditions are met in the current state of our knowledge on climate sensitivity, and illustrate this situation based on an energy balance model of climate. We finally discuss the implications of these results on the development of adaptation and mitigation policy.  相似文献   
90.
Climate change impacts on the regional hydrological cycle are compared for model projections following an ambitious emissions-reduction scenario (E1) and a medium-high emissions scenario with no mitigation policy (A1B). The E1 scenario is designed to limit global annual mean warming to 2 °C or less above pre-industrial levels. A multi-model ensemble consisting of ten coupled atmosphere–ocean general circulation models is analyzed, which includes five Earth System Models containing interactive carbon cycles. The aim of the study is to assess the changes that could be mitigated under the E1 scenario and to identify regions where even small climate change may lead to strong changes in precipitation, cloud cover and evapotranspiration. In these regions the hydrological cycle is considered particularly vulnerable to climate change, highlighting the need for adaptation measures even if strong mitigation of climate change would be achieved. In the A1B projections, there are significant drying trends in sub-tropical regions, precipitation increases in high latitudes and some monsoon regions, as well as changes in cloudiness and evapotranspiration. These signals are reduced in E1 scenario projections. However, even under the E1 scenario, significant precipitation decrease in the subtropics and increase in high latitudes are projected. Particularly the Amazon region shows strong drying tendencies in some models, most probably related to vegetation interaction. Where climate change is relatively small, the E1 scenario tends to keep the average magnitude of potential changes at a level comparable to current intra-seasonal to inter-annual variability at that location. Such regions are mainly located in the mid-latitudes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号