The knowledge of Martian geology has increased enormously in the last 40 yr. Several missions orbiting or roving Mars have revolutionized our understanding of its evolution and geological features, which in several ways are similar to Earth, but are extremely different in many respects. The impressive dichotomy between the two Martian hemispheres is most likely linked to its impact cratering history, rather than internal dynamics such as on Earth. Mars' volcanism has been extensive, very long-lived and rather constant in its setting. Water was available in large quantities in the distant past of Mars, when a magnetic field and more vigorous tectonics were active.Exogenic forces have been shaping Martian landscapes and have led to a plethora of landscapes shaped by wind, water and ice. Mars' dynamical behavior continues, with its climatic variation affecting climate and geology until very recent times. This paper tries to summarize major highlights in Mars' Geology, and points to deeper and more extensive sources of important scientific contributions and future exploration. 相似文献
A provenance and stratigraphic study of the Neoproterozoic Pontas do Salso Complex (PSC), western portion of the Dom Feliciano Belt (DFB), was conducted with U–Pb zircon geochronological analysis of the metasediments and the host rocks. The U–Pb isotopic data from detrital zircon of the metasediments indicate the source from the latest Middle Tonian to Late Cryogenian (between 897 and 684 Ma) and maximum depositional age of 685 ± 18 Ma in an arc-related basin setting adjacent in the Sao Gabriel Arc. The metasediments of the PSC form an elongated body in the N35°E direction and occur in the central portion of the São Gabriel Terrane (SGT), which is constituted by ophiolitic complexes and arc-related rocks, generated probably during the final consolidation of Rodinia supercontinent, although this question is still open. Low- to medium-K calc-alkaline, metaluminous affinity, and trace-element geochemistry suggest that the chemical composition of the protoliths was generated from metasomatized mantle sources in subduction zones. The PSC is composed of meta-arkoses, with subordinate metaconglomerates and metapelites. The meta-arkoses are disposed in plane-parallel layers, which also internally feature small-scale cross-bedding structures. The matrix has a blastopsammitic, poorly selected, fine to coarse texture, and hexagonal quartz and plagioclase porphyroclasts with superimposed thermal metamorphism. The polymict metaconglomerates are matrix-supported, with 15–55% of clasts of metavolcanic rocks, metasediments, undeformed granites, and quartz veins. The metapelites comprise mainly muscovite phyllites with syn-tectonic garnet and chloritoid porphyroblasts. The PSC represents a sedimentary succession deposited on an arc-related basin formed during the collapse and uplift of the SGT. 相似文献
The spatial pattern of the nursery areas of red mullet (Mullus barbatus), hake (Merluccius merluccius) (Linnaeus, 1758) and deep-water rose shrimp (Parapenaeus longirostris) (Lucas, 1846) was studied in the South Adriatic and North Ionian Seas (Eastern-Central Mediterranean) applying geostatistical techniques and data from time series trawl surveys conducted in the area. The analysed variables were: R (number of recruits/km2) and R/Tot (fraction of recruits on the total sampled population). The structural analysis showed a spatial pattern of both variables characterized by continuity on a small scale. Predictions of nursery area localization with probability of finding recruits at different threshold values were obtained through median indicator kriging. For the red mullet the nurseries were mainly identified in the South Adriatic Sea off the Gargano peninsula and between Molfetta and Monopoli within 50 m in depth. The main concentration of hake juveniles was found to be between 100 and 200 m in depth along the Gargano peninsula and between Otranto and Santa Maria di Leuca, where a nursery of deep-water rose shrimp was also detected. An overlapping depth, between 100 and 200 m, was identified for hake and deep-water rose shrimp nurseries. Protection of these areas through limitations of fishing pressure is discussed. 相似文献
Two suites of ultramafic xenoliths have been found in ultrapotassic lavas from the 0.9 Ma old Torre Alfina volcano sited at the northern border of the Vulsinian district (Central Italy). One group of Xenoliths consists of spinel-bearing lherzolites, harzburgites, minor wherlites and dunites with a maximum size of 3–4 cm. Some samples contain discrete laths of phlogopite. A second class consists of phlogopite-rich, glass-bearing peridotites. The first suite displays textural characteristics such as triple points, deformed olivine with well developed kink banding and porphyroclastic textures indicating equilibration at high pressure. Pressure estimates give values in the range 1.3–2.5 GPa, corresponding to mantle depths in the area, where the present-day Moho is about 25 km deep. Equilibration temperatures have been estimated in the range between 950–1000°C. The chemical composition of some phases, such as the very high Fo contents of olivines (up to Fo94 in harzburgites), Mg content of orthopyroxenes and Cr/Cr+Al ratios of clinopyroxenes and spinels, suggest that these xenoliths represent peridotites which suffered different degrees of partial melting before being incorporated into the Torre Alfina magma. On the other hand, the occurrence of phlogopite speaks for metasomatic events. The phlogopite-rich, glass-bearing xenoliths consist of phlogopite, olivine, clinopyroxene, rare orthopyroxene and glass. Apatite is the most common accessory. Olivine is present in both euhedral and strained crystals. A few relics of protogranular textures are also observed. Textural and chemical evidence suggests that these xenoliths represent mica-rich peridotites which have undergone phlogopite breakdown during rapid rise to the surface with the development of a K-rich liquid which reacted with mafic phases producing a rapid growth of olivine and, to a lower extent, pyroxene. Originally, these xenoliths may have represented intensively metasomatized upper mantle. However, a cumulitic origin from previous potassic magmatic events cannot be excluded. The host lavas have compositions intermediate between high-silica lamproite and Roman-type ultrapotassic rock. They have high abundances of incompatible elements and radiogenic Sr, coupled with high Mg content, MgO/CaO, Ni and Cr. These features support a genesis in a residual upper mantle which has suffered partial melting with the extraction of basaltic liquids, followed by metasomatic events which caused an enrichment in incompatible elements and radiogenic Sr. The presence of mantle-derived ultramafic xenoliths in the torre Alfina lavas testifies for a rapid uprise of the magma which reached the surface without suffering fractional crystallization and significant interaction with the upper crust. Accordingly, the Torre Alfina lavas represent an unique example of primitive potassic liquid in Central Italy. 相似文献
A shallow water hydrostatic 2D hydrodynamic numerical model, based on the boundary conforming coordinate system, was used to simulate aspects of both general and small scale oceanic features occurring in the composite system constituted by the Adriatic Sea and the Lagoon of Venice (Italy), under the influence of tide and realistic atmospheric forcing. Due to a specific technique for the treatment of movable lateral boundaries, the model is able to simulate efficiently dry up and flooding processes within the lagoon. Firstly, a model calibration was performed by comparing the results of the model, forced using tides and ECMWF atmospheric pressure and wind fields, with observations collected for a set of 33 mareographic stations uniformly distributed in the Adriatic Sea and in the Lagoon of Venice. A second numerical experiment was then carried out by considering only the tidal forcing. Through a comparison between the results obtained in the two experiments it was possible to assess the reliability of the estimated parameter through the composite forcing. Model results were then verified by comparing simulated amplitude and phase of each tidal constituent as well as tidal velocities simulated at the inlets of the lagoon and in the Northern Adriatic Sea with the corresponding observed values. The model accurately reproduces the observed harmonics: mean amplitude differences rarely exceed 1 cm, while phase errors are commonly confined below 15°. Semidiurnal and diurnal currents were correctly reproduced in the northern basin and a good agreement was obtained with measurements carried out at the lagoon inlets. On this basis, the outcomes of the hydrodynamic model were analyzed in order to investigate: (i) small-scale coastal circulation features observed at the interface between the adjoining basins, which consist often of vortical dipoles connected with the tidal flow of Adriatic water entering and leaving the Lagoon of Venice and with along-shore current fields connected with specific wind patterns; (ii) residual oscillations, which are often connected to meteorological forcing over the basin. In particular, it emerges that small-scale vortical features generated near the lagoon inlet can be efficiently transported toward the open sea, thus contributing to the water exchange between the two marine regions, and a realistic representation of observed residual oscillations in the area would require a very detailed knowledge of atmospheric as well as remote oceanic forcing. 相似文献
Major, trace element, Sr isotopic and mineral chemical data are reported for mafic volcanic rocks (Mg-value 65) from the northern-central sector of the potassic volcanic belt of Central Italy. The rocks investigated range from potassic series (KS) and high-K series (HKS) to lamproitic (LMP) and kamafugitic (KAM) through a transitional series (TRANS), thus covering the entire compositional spectrum of potassic and ultrapotassic magmas. KAM rocks are strongly silica undersaturated and, compared with the other rock series, have low SiO2, Al2O3, Na2O, Sc and V and high CaO, K/Na, (Na + K)/Al. KS and HKS have high Al2O3, CaO and variable enrichment in K2O and incompatible elements. LMP rocks are saturated in silica and have high SiO2, K2O, K2O/Na2, MgO, Ni and Cr and low Al2O3, CaO, Na2O, Sc and V. TRANS rocks display intermediate compositional characteristics between LMP and KS.
All the rocks under study have fractionated hygromagmaphile element patterns with high LIL/HFS element values and negative anomalies of Ti, Ta, Nb and Ba. Negative Sr anomalies are observed in the LMP and TRANS rocks. LIL elements show overall positive correlations with K2O, whereas different trends of Sr and HFSE vs. K2O are defined by LMP-TRANS and KS-HKS-KAM. 87Sr/86Sr range from about 0.710 to 0.716. KS, HKS and KAM rocks have similar 87Sr/86Sr values clustering around 0.710. LMP and TRANS rocks have the highest 87Sr/86Sr values.
Geochemical and isotopic data reported for the most primitive Italian potassic and ultrapotassic rocks support the hypothesis that the interaction between crustal and mantle reservoirs was a main process in the genesis of Italian potassic magmatism. Simple mass balance calculations exclude, however, an important role of crustal assimilation during ascent of subcrustal magmas to the surface and indicate that the sources of Central Italy volcanics underwent contamination with fluids and/or melts released by upper crustal material previously brought into the mantle by subduction processes.
Different trends of incompatible elements vs. K2O observed in the studied rocks suggest distinct metasomatic processes for the sources of the investigated magmas. Liquids derived by bulk melting of pelitic sediments are believed to be the most likely contaminants of the source of LMP rocks. Fluids or melts rich in Ca, Sr and with high LILE/HFSE value and Sr isotopic composition around 0.710 are the most likely contaminant of the source region of KS, HKS and KAM volcanics. Variations in CaO, Na2O and ferromagnesian element abundances and ratios suggest that, in some zones, the mantle source of potassic magmas experienced partial melting with extraction of basaltic liquids prior to metasomatism. 相似文献
Changes in the shore topography (e.g. slope) occur at a scale of hundreds of meters in several locations in the Lusitanian and the Mediterranean Sea provinces. We tested whether differences in the bottom inclination might affect the vertical distribution patterns of two sympatric coastal labrid fishes, the rainbow wrasse Coris julis and the ornate wrasse Thalassoma pavo. Visual censuses were used to determine the distribution and abundance of these labrid species in high (≥30°) and low (≤3°) slope rocky substrates covered by brown macroalgae and at two different depths (shallow, 4–7 m, and deep 14–20 m). Pectoral fin aspect ratio was used as an estimate of swimming performance to potentially explain the patterns observed. Despite the intrinsic biogeographical differences in the overall density of T. pavo and C. julis, on steep coasts the ornate wrasse dominated in shallow waters, whereas the two species coexisted both in shallow and deeper depths on gentle slope coasts. These distribution patterns were consistent across locations, and fin aspect ratio was not a good predictor of between‐habitat use for wrasses. We show that, under specific topographical conditions, the depth segregation pattern seems to be an interactive segregation (likely related to resource competition) rather than a result of selective segregation due to morphological differences in the pectoral fin. Significant ecological changes might occur in locations where the density of T. pavo has recently increased as a result of water warming. 相似文献
The average composition and seasonal variations of atmospheric organic particulates with respect to n-alkanes, n-alkanoic acid, polycyclic aromatic hydrocarbon (PAHs), and nitrated polycyclic aromatic hydrocarbons (N-PAHs) were determined at the biggest municipal waste landfill in Algeria located in Oued Smar, 13 km east of downtown Algiers. Samplings were carried out from August 2002 to February 2003, and organic compounds adsorbed in air particles having an aerodynamic diameter lower than 10 μm (PM10) were characterized using gas chromatography coupled with mass spectrometric detection (GC/MSD). Total concentrations ranged from 828 to 11,068 ng per cubic meter of air for n-alkanes, from 1714 to 21,710 ng per cubic meter of air for n-alkanoic acids, from 13 to 212 ng per cubic meter of air for PAHs and from 93 to 205 pg per cubic meter of air for N-PAHs. n-Alkanoic acids accounted for 85 and 56% of the total organic composition of the aerosol measured in summer and winter, respectively, were the biggest fraction. The distribution profiles and the diagnostic ratios of some marker compounds allowed to identify the combustion and microbial activity as the major sources of particulate organic pollutants associated with direct emission. The year-time dependence of organic fraction content of aerosol in Oued Smar appeared to be related to average meteorological conditions as well as variability of rate and nature of materials wasted into the landfill. 相似文献