首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2863篇
  免费   154篇
  国内免费   33篇
测绘学   90篇
大气科学   307篇
地球物理   677篇
地质学   867篇
海洋学   238篇
天文学   522篇
综合类   6篇
自然地理   343篇
  2022年   15篇
  2021年   52篇
  2020年   62篇
  2019年   56篇
  2018年   68篇
  2017年   83篇
  2016年   111篇
  2015年   95篇
  2014年   103篇
  2013年   193篇
  2012年   126篇
  2011年   162篇
  2010年   123篇
  2009年   157篇
  2008年   154篇
  2007年   155篇
  2006年   151篇
  2005年   117篇
  2004年   105篇
  2003年   106篇
  2002年   90篇
  2001年   61篇
  2000年   63篇
  1999年   44篇
  1998年   40篇
  1997年   32篇
  1996年   31篇
  1995年   33篇
  1994年   24篇
  1993年   25篇
  1992年   14篇
  1991年   20篇
  1990年   17篇
  1989年   29篇
  1988年   13篇
  1987年   23篇
  1986年   12篇
  1985年   35篇
  1984年   21篇
  1983年   24篇
  1982年   17篇
  1981年   23篇
  1980年   16篇
  1979年   17篇
  1978年   14篇
  1977年   15篇
  1975年   15篇
  1974年   18篇
  1973年   11篇
  1971年   9篇
排序方式: 共有3050条查询结果,搜索用时 265 毫秒
201.
Broad relationships between weather and human health have long been recognized, and there is currently a large body of research examining the impacts of climate change on human health. Much of the literature in this area examines climate–health relationships at global or regional levels, incorporating mostly generalized responses of pathogens and vectors to broad changes in climate. Far less research has been done to understand the direct and indirect climate-mediated processes involved at finer scales. Thus, some studies simplify the role of climate and may over- or under-estimate the potential response, while others have begun to highlight the subtle and complex role for climate that is contingent on other relevant processes occurring in natural and social environments. These fundamental processes need to be understood to determine the effects of past, current and future climate variation and change on human health. We summarize the principal climate variables and climate-dependent processes that are believed to impact human health across a representative set of diseases, along with key uncertainties in these relationships.  相似文献   
202.
203.
For landscape models to be applied successfully in management situations, models must address appropriate questions, include relevant processes and interactions, be perceived as credible and involve people affected by decisions. We propose a framework for collaborative model building that can address these issues, and has its roots in adaptive management, computer‐supported collaborative work and landscape ecology. Models built through this framework integrate a variety of information sources, address relevant questions, and are customized for the particular landscape and policy environment under study. Participants are involved in the process from the start, and because their input is incorporated, they feel ownership of the resulting models, increasing the chance of model acceptance and application. There are two requirements for success: a tool that supports rapid model prototyping and modification, that makes a clear link between a conceptual and implemented model, and that has the ability to implement a wide range of model types; and a core team with skills in communication, research and analysis, and knowledge of ecology and forestry in addition to modelling. SELES (Spatially Explicit Landscape Event Simulator) is a tool for building and running models of landscape dynamics. It combines discrete event simulation with a spatial database and a relatively simple modelling language to allow rapid development of landscape simulations, and provides a high‐level means of specifying complex model behaviours ranging from management actions to natural disturbance and succession. We have applied our framework in several forest modelling projects in British Columbia, Canada. We have found that this framework increases the interest by local experts and decision‐makers to participate actively in the model building process. The workshop process and resulting models have efficiently provided insight into the dynamics of large landscapes over long time frames. The use of SELES has facilitated this process by providing a flexible, transparent environment in which models can be rapidly implemented and refined. As a result, model findings may be more readily incorporated into decision‐support systems designed to assist resource managers in making informed decisions.  相似文献   
204.
Forecasting Monsoon Precipitation Using Artificial Neural Networks   总被引:1,自引:0,他引:1  
This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.  相似文献   
205.
A lightweight, percussion corer, suitable for use in remote lakes of moderate depth, is described. The operation of the corer and suggestions for securing and transporting long sediment cores are presented. In particular, the design and use of a recovery pot, which allows the retrieval of undisturbed cores from sediments of unknown depth, is detailed.  相似文献   
206.
Vein distributions in line samples from four epithermal Au–Ag deposits of the Hauraki Goldfield were logged and quantified by vein spacing, vein density, vein thickness and percentage of vein extension. One deposit is hosted in andesite lavas (Martha Hill), one in andesite lavas and dacite porphyry, dacitic tuffs and pyroclastic breccias (Golden Cross), and two in rhyolite lavas and rhyolitic tuffs with minor andesite lavas or andesite dikes (Ohui and Wharekirauponga). The vein systems in these deposits form fault-controlled arrays of extensional veins. Vein spacing distributions are non-fractal over two to three orders of magnitude (1 mm to 5 m), and therefore fractal dimension statistics are not applicable. The coefficient of variation (Cv) of vein spacing was used as a measure of the degree of vein clustering. Rock type has a marked influence on vein spacing distributions, with veining in rhyolite lava having lower average thickness and percentage extension, but a generally higher degree of vein clustering compared with veining in andesite lava in the same deposit. Vein spacing distributions in well-jointed lithologies, mainly andesite lava, have Cv values (0.8–1.2) that are indicative of anticlustered to weakly clustered patterns, particularly in the vein stockwork of the upper part of the Golden Cross deposit. These Cv values are consistent with field observations that joints are a major control on vein spacing. In the poorly jointed dacitic and rhyolitic rocks, the veins are weakly to strongly clustered as shown by higher Cv values (1.2–2.4), and are commonly associated with normal faults. Overall, andesite lava and dacite porphyry and pyroclastics host thicker and more persistent veins than rhyolite lava and tuff. These larger veins contain significant volumes of high-grade gold mineralisation. The higher chemical reactivity to hydrothermal fluids of andesite and dacite compared with rhyolite may have aided propagation and thickening of the veins in andesite-hosted deposits. Within an individual epithermal deposit, location close to thick veins, representing major fluid conduits, commonly overrides the effect of different lithologies. Sites that are deeper and located within or adjacent to major vein structures have higher average vein thickness, percentage extension and degree of vein clustering. Systematic collection and analysis of vein spacing, thickness and density data can be used to define trends that are useful in the exploration of gold-bearing epithermal vein deposits. Received: 25 August 1998 / Accepted: 23 December 1999  相似文献   
207.
Cryptic sequence boundaries in braided fluvial successions   总被引:2,自引:0,他引:2  
In braided fluvial deposits, consisting of monotonous successions of sandstone or conglomerate, it may be difficult to distinguish regionally significant bounding surfaces (sequence boundaries) from autogenic channel-scour surfaces. Major surfaces may be characterized by erosional relief and draped by lag deposits, but not all sequence boundaries show these characteristics. Other clues to the presence of a major surface are sharp changes in detrital composition, shifts in regional palaeocurrent trends and evidence of early diagenesis of the sandstones immediately below the sequence boundary. Examples of these attributes of cryptic sequence boundaries are illustrated from three Mesozoic units in the Colorado Plateau area of the United States. In the Chinle Formation (Triassic), near Moab, Utah, angular intraformational unconformities overlie sandstones showing evidence of early diagenesis. In the Castlegate Sandstone (Upper Cretaceous) of east-central Utah, a cryptic sequence boundary can be discriminated from other erosion surfaces by the evidence of detrital petrography and early diagenesis. Palaeocurrent data indicate changes in regional palaeoslope at two sequence boundaries within this unit. Evidence of early diagenesis is also present at a sequence boundary in the Kayenta Formation (Jurassic) of westernmost Colorado.  相似文献   
208.
长江三角洲南部“大城市圈振兴”理论的质疑   总被引:3,自引:0,他引:3  
Mart.  AM 《地理学报》1996,51(3):272-282
工业发展和城市化的传统理论,对亚洲的某些具有较高生产力水平,且还在发展中的“大城市圈”不能充分地解释,本文对长江三角洲南部空间经济转为的“大城市圈振兴”理论进行了批判地评论,根据最新的现场调查结果,从根本上对“转为过程”的假说提出质疑,并且提出了更适当的的区域发展战略,此外还证明,关于亚洲大城市带的一般结论,必须建立在对地方性经济变革认识的基础之上。  相似文献   
209.
Book reviews     
Andrew D. Miall 《GeoJournal》1992,28(2):303-304
  相似文献   
210.
Whither stratigraphy?   总被引:2,自引:0,他引:2  
There have been three revolutions in sedimentary geology. The first two began in the 1960s, consisting of the development of process-response sedimentary models and the application of plate-tectonic concepts to large-scale aspects of basin analysis. The third revolution, that of sequence stratigraphy, began in the late 1970s and helped to draw together the main results of the first two: the knowledge of autogenic processes learned through facies analysis, and the understanding of tectonism implicit in the unravelling of regional plate kinematics. Developments in the use of seismic-reflection data and the evaluation of a hypothesis of global eustasy provided considerable stimulation for stratigraphic research.Current developments in the field of sequence stratigraphy are focusing on three areas. (1) Elaboration of the sequence-architecture models for various configurations of depositional environment and sea-level history. (2) Exploration of various mechanisms for sequence generation, especially tectonism and orbital forcing. (3) Attempts to improve the level of precision in stratigraphic correlation and to refine the geological time scale, as a means to test the model of global eustasy.The growth in the power of computers and our knowledge of physical and chemical processes has led to the evolution of an entirely new way of evaluating earth history, termed quantitative dynamic stratigraphy. Mathematical modelling and numerical simulation of complex earth processes are now possible, and require the collection and integration of a wide array of quantitative and qualitative data sets. Applications include the study of the geodynamic evolution of sedimentary basins, modelling of stratigraphic sequences and global climates, studies of Milankovitch cycles (cyclostratigraphy) and simulation of fluid flow through porous media. The Global Sedimentary Geology Program has brought many of these areas of study together in multidisciplinary, global-scale studies of the sedimentary history of the earth. The results of these studies have wide application to many problems of importance to the human condition, including the past history of global climate change and other environmental concerns. The study of stratigraphy is at the centre of the new view of the earth, termed earth-systems science, which views earth as an ‘organic’ interaction between the lithosphere, biosphere, hydrosphere, and atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号