Cool‐water carbonate sedimentation has dominated Mediterranean shelves since the Early Pliocene. Skeletal sand and gravel herein consist of remains of heterozoan organisms, which are susceptible to reworking due to weak early cementation in non‐tropical waters. This study documents the Lower Pleistocene carbonate wedge of Favignana Island (Italy), which prograded from a 5 km wide passage between two palaeo‐islands into a perpendicular, 10 to 15 km wide strait between the palaeo‐islands at one side and Sicily at the other during the Emilian highstand (1·6 Ma to 1·1 Ma). The clinoformed carbonate wedge, which is 50 m thick and 6 km long, formed by east/south‐east progradation of a platform on the submarine sill by currents that were funnelled between the two palaeo‐islands. Platform‐slope clinoforms evolved from initial aggradation (thin and low‐angle) into a progradation phase (thick and high‐angle). Both clinoform types are characterized by a bimodal facies stacking pattern defined by sedimentary structures created by: (i) subaqueous dunes associated with dilute subcritical currents; and (ii) upper‐flow‐regime bedforms associated with sediment‐laden supercritical turbidity currents. Focusing of episodic currents on the platform by funnelling between the islands controlled the downstream formation of a sediment body, here named carbonate delta. The carbonate delta interfingers with subaqueous dune deposits formed in the perpendicular strait. This study uses a reconstruction of bedform dynamics to unravel the evolution of this gateway‐related carbonate accumulation. 相似文献
This paper presents a computational method able to effectively model both the simultaneous processes typically observed in backward erosion piping, ie, the pipe tip propagation and the conduit cross-section enlargement. The numerical method is based on the novel formulation of a problem of localized erosion along a line propagating in a multidimensional porous medium. In this line, a conduit with evolving transverse size is embedded, which conveys a multiphase flow. The two systems, porous medium and pipe, are bridged by exchange terms of multiphase fluid mass and by a shared fluid pressure field. On the contrary, different fields are considered to describe flows, which are assumed as Darcian in the porous medium and turbulent in the conduit. These two flows drive pipe propagation and enlargement, respectively, as modeled by means of proper erosion kinetic laws. The corresponding numerical formulation is based on the combination between one- and multidimensional finite elements, to model the erosion conduit and the porous medium, respectively. Several simulations are proposed to demonstrate the ability of the proposed approach in reproducing available experimental data of real-scale tests on levees. Our results point out the crucial role played by the combined influence of pipe propagation and enlargement, as well as of three-dimensional (3D) effects. We also assess the mesh independence of the proposed numerical solution, particularly as concerns the calculated pipe propagation history. 相似文献
We present the results of a decade of X‐ray observations of the gamma ray loud binary HESS J0632+057 and interpret the available broadband data in view of the system geometry and emission mechanisms. We have performed an analysis of all X‐ray data available to date from Swift, XMM‐Newton, Chandra, NuSTAR, and Suzaku. We refine the orbital period of the system to be days (95% c.l.), consistent with previous studies but measured with significantly better accuracy. We report on a hydrogen column density and spectral slope variation along the orbit. We argue that the observed variability can be explained within an “inclined disk” model in which the orbit of the compact object is inclined to the disk of the Be star. We show that the observed X‐ray to TeV emissions can originate from a broken cut‐off power‐law population of electrons and describe a way in which future X‐ray/TeV observations can distinguish between the proposed model and the alternative flip‐flop emission scenario of this system. 相似文献
Yield and plastic potential surfaces are often affected by problems related to convexity. One such problem is encountered when the yield surface that bounds the elastic domain is itself convex; however, convexity is lost when the surface expands to pass through stress points outside the current elastic domain. In this paper, a technique is proposed, which effectively corrects this problem by providing linear homothetic expansion with respect to the centre of the yield surface. A very compact implicit integration scheme is also presented, which is of general applicability for isotropic constitutive models, provided that their yield and plastic potential functions are based on a separate mathematical definition of the meridional and deviatoric sections and that stress invariants are adopted as mechanical quantities. The elastic predictor‐plastic corrector algorithm is based on the solution of a system of 2 equations in 2 unknowns only. This further reduces to a single equation and unknown in the case of yield and plastic potential surfaces with a linear meridional section. The effectiveness of the proposed convexification technique and the efficiency and stability of the integration scheme are investigated by running numerical analyses of a notoriously demanding boundary value problem. 相似文献
A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0–6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L’Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
In the Kaapvaal craton of southern Africa, as well as other Archaean cratons worldwide, the progression from dominant tonalite-trondhjemite-granodiorite(TTG) to granite-monzogranite-syenogranite(GMS)rock types is interpreted to reflect progressive reworking and differentiation of the continental crust.Here we re-evaluate the early Archaean evolution of the Kaapvaal craton and propose a unified view of the plutonic and volcanic records based on elemental and isotopic(Nd, Hf) data and zircon U-Pb ages.We also report new whole-rock major and trace element analyses, zircon U-Pb ages and Hf-in-zircon analyses of igneous clasts from a conglomerate of the 3.2 Ga Moodies Group of the Barberton Greenstone Belt. Many of these clasts are derived from shallow intrusive rocks of granitic composition, which are scarcely represented in outcrop. Despite alteration, the volcanic rocks can be classified based on their trace element contents into two main groups by comparison with plutonic rocks. One group has characteristics resembling TTGs: relatively low and fractionated rare earth element concentrations with no Eu anomaly and relatively low concentrations of high field strength elements(Nb mostly ≤12 ppm). The second group has GMS-like characteristics: less fractionated REE, marked negative Eu anomalies and HFSE-increasing trends with progressing fractionation(Nb ≤ 50 ppm or more, Th up to 30-40 ppm). In addition, igneous clasts of Moodies Group conglomerate have chemical, mineralogical and isotopic characteristics that link them to GMS. New analyses of some of these clasts indicate elevated high field strength elements(Nb up to 20 ppm) and_(εHf)(t)of zircon down to -3.5. These rocks imply the presence of an already differentiated felsic crust at 3.5 Ga, which has Nd and Hf model ages indicating mantle extraction ages extending back to the Eoarchaean. The combined record of plutonic and volcanic rocks of the Kaapvaal craton provides a more complex scenario than previously suggested and indicates that TTG and GMS-like felsic magmas were emplaced broadly coevally in multiple pulses between ~3.5 Ga and 3.2 Ga. 相似文献
Glacial–interglacial cycles are characterized by strong variations in climatic conditions, which affect the size of continental ice sheets, glaciers and lakes. Such climate‐triggered fluctuations in ice and water masses lead to transient stresses in the Earth's crust, which can be large enough to affect the slip behaviour of faults. In particular, postglacial unloading may increase the slip rate of active faults or re‐activate dormant faults. In the past, numerical modelling has helped to better understand the response of faults to mass fluctuations on Earth's surface. This article provides an overview of the mechanisms and controlling parameters of climate‐induced variations in fault slip as derived from the numerical models. Geological records of postglacial faulting from Scandinavia, the European Alps and the Basin‐and‐Range Province (western USA) are presented. Taken together, modelling and case studies provide a basis for evaluating the future seismic potential in regions that are currently experiencing ice loss or lake regression. 相似文献
The Quaternary stratigraphic record of Jebel El Mida, composed of continental deposits, is a useful example of concomitant travertines and alluvial deposition in an extensional setting. Travertine deposition occurred in a faulted Pleistocene alluvial fan giving rise to seven (recognised) facies interfingering with five other alluvial ones. The travertine depositional events indicate a tectonically driven evolution from terraced slope (facies group FC1–FC6) to a travertine fissure ridge-type depositing phase (facies group of FC1–FC7). Interfingering between travertine and alluvial facies indicates the co-existence of adjacent and time-equivalent depositional environments. The travertine deposition resulted from deep origin hydrothermal fluids channelled along damaged rocks volumes associated to a regional fault system, named as the Gafsa Fault (GF). The travertine–terrigenous succession in Jebel El Mida highlights the major role played by the GF in controlling: (i) the hydrothermal fluid flow, still active as also indicated by the numerous thermal springs aligned along the fault zone; (ii) paleoflow directions, discharge locations, volume, rate and fluctuations of the water supply. The paleoclimatic correlation with adjacent localities reveals that, at that time, humid episodes could have contributed to the recharge of the hydrothermal system and to the deposition of alluvial sediments. 相似文献
We present 10Be‐based basin‐averaged denudation rates for the entire western margin of the Peruvian Andes. Denudation rates range from c. 9 mm ka?1 to 190 mm ka?1 and are related neither to the subduction of the Nazca plate nor to the current seismicity along the Pacific coast and the occurrence of raised Quaternary marine terraces. Therefore, we exclude a tectonic control on denudation on a millennial time‐scale. Instead, we explain >60% of the observed denudation rates with a model where erosion rates increase either with mean basin slope angles or with mean annual water discharge. These relationships suggest a strong environmental control on denudation. 相似文献