Accurate modelling of the conductivity structure of mineralisations can often be difficult. In order to remedy this, a parametric approach is often used. We have developed a parametric thin‐sheet code, with a variable overburden. The code is capable of performing inversions of time‐domain airborne electromagnetic data, and it has been tested successfully on both synthetic data and field data. The code implements an integral solution containing one or more conductive sheets, buried in a half‐space with a laterally varying conductive overburden. This implementation increases the area of applicability compared to, for example, codes operating in free space, but it comes with a significant increase in computational cost. To minimise the cost, the code is parallelised using OpenMP and heavily optimised, which means that inversions of field data can be performed in hours on multiprocessor desktop computers. The code models the full system transfer function of the electromagnetic system, including variable flight height. The code is demonstrated with a synthetic example imitating a mineralisation buried underneath a conductive meadow. As a field example, the Valen mineral deposit, which is a graphite mineral deposit located in a variable overburden, is successfully inverted. Our results match well with previous models of the deposit; however, our predicted sheet remains inconclusive. These examples collectively demonstrate the effectiveness of our thin‐sheet code. 相似文献
We present a minimal conceptual model for the Atlantic meridional overturning circulation which incorporates the advection of salinity and the basic dynamics of the oceanic pycnocline. Four tracer transport processes following Gnanadesikan in Science 283(5410):2077–2079, (1999) allow for a dynamical adjustment of the oceanic pycnocline which defines the vertical extent of a mid-latitudinal box. At the same time the model captures the salt-advection feedback (Stommel in Tellus 13(2):224–230, (1961)). Due to its simplicity the model can be solved analytically in the purely wind- and purely mixing-driven cases. We find the possibility of abrupt transition in response to surface freshwater forcing in both cases even though the circulations are very different in physics and geometry. This analytical approach also provides expressions for the critical freshwater input marking the change in the dynamics of the system. Our analysis shows that including the pycnocline dynamics in a salt-advection model causes a decrease in the freshwater sensitivity of its northern sinking up to a threshold at which the circulation breaks down. Compared to previous studies the model is restricted to the essential ingredients. Still, it exhibits a rich behavior which reaches beyond the scope of this study and might be used as a paradigm for the qualitative behaviour of the Atlantic overturning in the discussion of driving mechanisms. 相似文献
Field investigations were carried out to determine the occurrence of tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL), the source zone architecture and the aquitard integrity at a 30‐ to 50‐year old DNAPL release site. The DNAPL source zone is located in the clay till unit overlying a limestone aquifer. The DNAPL source zone architecture was investigated through a multiple‐lines‐of‐evidence approach using various characterization tools; the most favorable combination of tools for the DNAPL characterization was geophysical investigations, membrane interface probe, core subsampling with quantification of chlorinated solvents, hydrophobic dye test with Sudan IV, and Flexible Liner Underground Technologies (FLUTe) NAPL liners with activated carbon felt (FACT). While the occurrence of DNAPL was best determined by quantification of chlorinated solvents in soil samples supported by the hydrophobic dye tests (Sudan IV and NAPL FLUTe), the conceptual understanding of source zone architecture was greatly assisted by the indirect continuous characterization tools. Although mobile or high residual DNAPL (St > 1%) only occurred in 11% of the source zone samples (intact cores), they comprised 86% of the total PCE mass. The dataset, and associated data analysis, supported vertical migration of DNAPL through fractures in the upper part of the clay till, horizontal migration along high permeability features around the redox boundary in the clay till, and to some extent vertical migration through the fractures in the reduced part of the clay till aquitard to the underlying limestone aquifer. The aquitard integrity to DNAPL migration was found to be compromised at a thickness of reduced clay till of less than 2 m. 相似文献
Deriving sediment quality guidelines (SQGs) for marine sediments is a difficult task. It will often be a trade off between reproducibility and relevance. One of the fundamental questions in ecotoxicology is to decide what one should measure to detect response in ecosystems exposed to human disturbance. In this paper we use field data to estimate threshold levels eliciting effects on soft bottom macrobenthos collected at different sediment types and depths on the Norwegian Continental Shelf and test these against natural levels occurring levels in reference conditions. SQGs are presented from multivariate analyses based on 121 gradients (represented with Ba, THC, Cd, Cu, Pb and Zn) incorporating more than 2000 species. Clear clusters with slightly disturbed communities related to contamination loadings were evident in 35% of the gradients. We found large variations in naturally occurring contamination concentrations and in the threshold levels electing effects on the fauna at different sediment types and depths. For example, an increase in depth of only 100 m can triple the Cu and Zn concentrations that elicit effects. Lowest background and threshold levels were found in shallow, sandy sediment. Our results suggest that current SQGs are too high. We hypothesised that setting a SQG of 4-times background concentrations will give sufficient protection for the fauna from metal contamination. The overall background concentration eliciting effects on metal was 3.6x. 相似文献
The Stockholm archipelago spans roughly a semicircular area with a radius of approximately 60 km, traditionally partitioned into three parts: the inner, the middle and the outer archipelago. This subdivision coincides with differing water exchange regimes. The inner and middle archipelagos are characterised by comparatively larger basins which are interconnected by a limited number of straits. This configuration is well suited for a discrete basin (DB-) model approach by partitioning the area into a set of sub-basins that are only resolved vertically. The advantage of this approach over 3D-models is the possibility for enhanced vertical resolution and improved strait exchange formulation, outweighing the disadvantage of neglected horizontal gradients within the basins. In the inner archipelago the dominating exchange process is estuarine circulation, induced by the marked freshwater discharge and the vertical mixing. In the outer and middle archipelagos the density fluctuations due to Ekman pumping along the Baltic boundary interface produce another type of baroclinic process that clearly dominates. Measurements to adequately resolve these density variations do not exist. Missing forcing data are provided by linking the middle archipelago's boundary straits to a 3D-model of the Baltic with a grid resolution of 0.5 nautical miles (n.m.). This fine resolution model (FR-domain) is in turn driven by the atmospheric forcing and the density variation at the rectangular boundary of the FR-domain which acceptably resolves both the interfacial straits and the outer archipelago's complex hypsography. Massive computing resources would be demanded if the FR-domain were extended to comprise the entire Baltic. The FR-domain is thus interfaced with an existing coarse resolution model of the entire Baltic (CR-domain) with a grid size of 5 n.m., the open boundary of which is located in the Kattegat. This 3-fold model set-up has been run for one whole year (1992) with a one-year spin-up time to make up for the lack of initial data. The model concept is at this stage to be regarded as a framework for further development in anticipation of improved formulations, particularly for the strait exchange formulation. Therefore only primary validation experiments and a few sensitivity analyses have been performed. 相似文献
The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method. 相似文献
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean. 相似文献
Hyporheic exchange flow (HEF) at the streambed–water interface (SWI) has been shown to impact the pattern and rate of discharging groundwater flow (GWF) and the consequential transport of heat, solutes and contaminants from the subsurface into streams. However, the control of geographic and hydromorphological catchment characteristics on GWF–HEF interactions is still not fully understood. Here, the spatial variability in flow characteristics in discharge zones was investigated and averaged over three spatial scales in five geographically different catchments in Sweden. Specifically, the deep GWF discharge velocity at the SWI was estimated using steady-state numerical models, accounting for the real multiscale topography and heterogeneous geology, while an analytical model, based on power spectral analysis of the streambed topography and statistical assessments of the stream hydraulics, was used to estimate the HEF. The modeling resulted in large variability in deep GWF and HEF velocities, both within and between catchments, and a regression analysis was performed to explain this observed variability by using a set of independent variables representing catchment topography and geology as well as local stream hydromorphology. Moreover, the HEF velocity was approximately two orders of magnitude larger than the deep GWF velocity in most of the investigated stream reaches, indicating significant potential to accelerate the deep GWF velocity and reduce the discharge areas. The greatest impact occurred in catchments with low average slope and in reaches close to the catchment outlet, where the deep GWF discharge velocity was generally low.