首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   0篇
测绘学   1篇
大气科学   6篇
地球物理   35篇
地质学   71篇
海洋学   6篇
天文学   59篇
综合类   1篇
自然地理   2篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   11篇
  2016年   17篇
  2015年   4篇
  2014年   9篇
  2013年   7篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   11篇
  2007年   9篇
  2006年   16篇
  2005年   5篇
  2004年   3篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1968年   1篇
排序方式: 共有181条查询结果,搜索用时 78 毫秒
71.
A mechanism of excitation of radial oscillations of a magnetic tube is proposed for the interpretation of a periodic modulation of type IV radio burst intensity in the meter and decimeter range. After the flare a configuration with denser plasma extended along the magnetic field can be formed in the corona. Eigenoscillations of such a system are damped by MHD-wave emission into the external coronal plasma. However, if high energy protons with 0.2 are trapped by this configuration, the damping of oscillations can be made up for by an amplification due to bounce-resonant plasma instability. The regularity of the pulse period is explained by presence of a maximum in the wave growth rate dependence on the frequency.  相似文献   
72.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   
73.
The first baroclinic Rossby radius of deformation (R 1) in the Sea of Okhotsk is estimated using the hydrological datasets from the World Ocean Atlas (WOA) 2001 and WOA 2013. It is established that the maximum values of R 1 are observed over the Kuril Basin (18–20 km), and its minimum values (1.5–2 km), over the northern shelf of the Sea of Okhotsk. In the central part of the sea R1 varies from 8 to 10 km. The seasonal variability of R1 for both datasets is characterized by the minima in winter and by the maxima in summer. It was found that on the eastern shelf of Sakhalin Island R 1 reaches the maximum both in November (~6 km) and in April (~4-5 km). According to the obtained estimates of R 1, the model grid resolution of 3 to 8 km should be used for the eddy-permitting numerical simulation of circulation in the Sea of Okhotsk, and the model grid resolution from 1.5 to 2 km, for the explicit simulation of mesoscale variability.  相似文献   
74.
Stepanov  A. V.  Kliem  B.  Krüger  A.  Hildebrandt  J. 《Solar physics》1997,176(1):147-152
Polarization properties of solar and stellar radio emission require, in some cases, emission below the third or fourth coronal electron gyro level, < 3,_c; 4, _c. In the context of plasma radiation, the source parameters should be such that the intermediate magnetic field condition 1 < p 2 / c 2 < 3 is satisfied. Supposing this condition, we investigate the generation of electrostatic waves in a warm background plasma with a high-energy component of magnetically trapped electrons. We invoke the conversion of upper-hybrid waves and Bernstein waves into electromagnetic radiation as being responsible for intense radio emission from a coronal magnetic loop. Moreover, odd-half harmonic emissions in the solar radio spectrum as well as the o-mode polarization at the second harmonic of the plasma frequency are natural consequence of this proposed model.  相似文献   
75.
To compare mm-wave and X-ray diagnostics of solar flare plasma, five flares observed in 1980–1991 in Metsähovi at 22 and 37 GHz and with GOES, SMM, and GRO are studied. The first impulsive peak of the mm-wave bursts under investigation coincides in time with hard X-ray emission. The second gradual component in mm-wave emission coincides with the maximum of the soft X-ray emission measure. The bremsstrahlung mm-wave radiation from hot chromospheric plasma and gyrosynchrotron radiation driven by common population of superthermal electrons are calculated. It is shown that for mm-wave events with the first peak intensity 100 s.f.u., the thermal bremsstrahlung is more important than the gyrosynchrotron emission. The total energy of fast electrons deduced from the first peak of mm-wave bursts is one to two orders of magnitude less than that determined from the hard X-ray emission in the approximation of a thick-target nonthermal model. That can testify in favour of the hybrid thermal/nonthermal model proposed by Holman and Benka (1992). The emission measure and the energy of evaporated plasma using both mm-wave and soft X-ray data are also determined. For events investigated here the energy of evaporated chromospheric plasma is larger than the total energy of fast electron beams. We have concluded that, for evaporation, additional energy release in the chromosphere is needed. The possibility of such energy release in the framework of an advanced circuit model for solar flares is discussed.  相似文献   
76.
77.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
78.
The shoshonitic intrusions of eastern Tibet, which range in age from 33 to 41 Ma and in composition from ultramafic (SiO2 = 42 %) to felsic (SiO2 = 74 %), were produced during the collision of India with Eurasia. The mafic and ultramafic members of the suite are characterized by phenocrysts of phlogopite, olivine and clinopyroxene, low SiO2, high MgO and Mg/Fe ratios, and olivine forsterite contents of Fo87 to Fo93, indicative of equilibrium with mantle olivine and orthopyroxene. Direct melting of the mantle, on the other hand, could not have produced the felsic members. They have a phenocryst assemblage of plagioclase, amphibole and quartz, high SiO2 and low MgO, with Mg/Fe ratios well below the values expected for a melt in equilibrium with the mantle. Furthermore, the lack of decrease in Cr with increasing SiO2 and decreasing MgO from ultramafic to felsic rocks precludes the possibility that the felsic members were derived by fractional crystallization from the mafic members. Similarly, magma mixing, crustal contamination and crystal accumulation can be excluded as important processes. Yet all members of the suite share similar incompatible element and radiogenic isotope ratios, which suggests a common origin and source. We propose that melting for all members of the shoshonite suite was initiated in continental crust that was thrust into the upper mantle at various points along the transpressional Red River-Ailao Shan-Batang-Lijiang fault system. The melt formed by high-degree, fluid-absent melting reactions at high-T and high-P and at the expense of biotite and phengite. The melts acquired their high concentrations of incompatible elements as a consequence of the complete dissolution of pre-existing accessory minerals. The melts produced were quartz-saturated and reacted with the overlying mantle to produce garnet and pyroxene during their ascent. The felsic magmas reacted little with the adjacent mantle and preserved the essential features of their original chemistry, including their high SiO2, low Ni, Cr and MgO contents, and low Mg/Fe ratio, whereas the mafic and ultramafic magmas are the result of extensive reaction with the mantle. Although the mafic magmas preserved the incompatible element and radiogenic isotope ratios of their crustal source, buffering by olivine and orthopyroxene extensively modified their MgO, Ni, Cr, SiO2 contents and Mg/Fe ratio to values dictated by equilibrium with the mantle.  相似文献   
79.
The Kokchetav complex in Kazakhstan contains garnet-bearing gneisses that formed by partial melting of metasedimentary rocks at ultrahigh-pressure (UHP) conditions. Partial melting and melt extraction from these rocks is documented by a decrease in K2O and an increase in FeO + MgO in the restites. The most characteristic trace element feature of the Kokchetav UHP restites is a strong depletion in light rare earth elements (LREE), Th and U. This is attributed to complete dissolution of monazite/allanite in the melt and variable degree of melt extraction. In contrast, Zr concentrations remain approximately constant in all gneisses. Using experimentally determined solubilities of LREE and Zr in high-pressure melts, these data constrain the temperature of melting to ~1,000 °C. Large ion lithophile elements (LILE) are only moderately depleted in the samples that have the lowest U, Th and LREE contents, indicating that phengite retains some LILE in the residue. Some restites display an increase in Nb/Ta with respect to the protolith. This further suggests the presence of phengite, which, in contrast to rutile, preferentially incorporates Nb over Ta. The trace element fractionation observed during UHP anatexis in the Kokchetav gneisses is significantly different from depletions reported in low-pressure restites, where generally no LREE and Th depletion occurs. Melting at UHP conditions resulted in an increase in the Sm/Nd ratio and a decoupling of the Sm–Nd and Lu–Hf systems in the restite. Further subduction of such restites and mixing with mantle rocks might thus lead to a distinct isotopic reservoir different from the bulk continental crust.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号