首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   5篇
地球物理   28篇
地质学   52篇
海洋学   8篇
天文学   29篇
综合类   3篇
自然地理   11篇
  2021年   4篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   11篇
  2010年   7篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   10篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   7篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1984年   1篇
  1979年   2篇
排序方式: 共有138条查询结果,搜索用时 0 毫秒
131.

Volume Contents

Contents of Volume 55  相似文献   
132.
The influence of temperature (25–400 °C) on the variations of mechanical, acoustic, electric and electromagnetic precursors of rock failure has been shown experimentally. The most significant variations were detected in the principal parameters of the acoustic and electromagnetic emissions whose impulse energy underwent a fast growth. However, the general character of hierarchical evolution stages of micro and macrofailure was practically unchanged. This has been confirmed by the so-called concentration parameter of rupture, which is theoretically calculated and checked in experiments; its space-time variations preceding the occurrence and progression of macrofailure are slightly depending on the rock temperature effect. This has been shown through the convolution of some physical precursors in a complex parameter whose variation showed an approaching of macrofailure, which remains slightly influenced by changes in temperature. Our results are interpreted in relation to physics of superficial earthquakes and precursors.  相似文献   
133.
Data about the variations of mesopause temperature (~87 km) obtained from ground-based spectrographic measurements of the OH emission (834.0 nm, band (6-2)) at Irkutsk and Zvenigorod observatories were compared with satellite data on vertical temperature distribution in the atmosphere from Aura MLS v3.3. We analyzed MLS data for two geopotential height levels: 0.005 hPa (~84 km) and 0.002 hPa (~88 km) as the closest to OH height (~87 km). We revealed that Aura MLS temperature data have lower values than ground-based (cold bias). In summer periods, that difference increases. Aura cold biases compared with OH(6-2) at Irkutsk and Zvenigorod were calculated. For the 0.002 hPa height level, the biases are 10.1 and 9.4 K, and for 0.005 hPa they are 10.5 and 10.2 K at Irkutsk and Zvenigorod, respectively. When the bias is accounted for, an agreement between Aura MLS and OH(6-2) data obtained at both Irkutsk and Zvenigorod is remarkable.  相似文献   
134.
Selected Tertiary coals from the Zeya–Buryea Basin, Far Eastern Russia, were investigated for aspects of their coal type, rank, depositional environment and post-depositional history. The coals have been examined in outcrop (lithotype logging), microscopically (maceral, reflectance and fluorescence), and geochemically (proximate analysis).Two laterally extensive coal-bearing horizons occur: one of Palaeocene age and the other of early Miocene age. The Palaeocene coals were investigated in active open-cut mines at Raichikhinsk and Yerkovtsi and the early Miocene deposit in an abandoned open-cut mine at Cergeyevka.Palaeocene coals at Raichikhinsk and Yerkovtsi were indistinguishable from each other macroscopically, microscopically, and geochemically. The deposits were sufficiently coalified that brightness logging could be undertaken. Dull coals, with numerous fusainous wisps, were dominant. Four dulling-up sequences, which represent stacked peat deposits, were observed at Raichikhinsk. At Yerkovtsi, only a small section of the middle of the seam, which was mostly dull and muddy coal, was investigated. Petrographically, these coals were dominated by inertinite group macerals, which is unusual in non-Gondwanan coals and rare in the Tertiary. Rank classification was problematic with volatile matter (VM) content of vitrain (daf), macroscopic appearance, and microscopic textures suggesting subbituminous B rank, but carbon content, moisture content and specific energy indicating a lignite rank.Notwithstanding complications of rank, estimates of the maximum-range burial depths were calculated. Taking the VM (daf) content of vitrain as 48%, burial depth estimates range from 900 m for a high geothermal gradient and long heating time to a maximum of 3300 m for a low geothermal gradient and short heating time. These estimates are maxima as the coal rank may be lower than implied by the VM.The Cergeyevka deposit is a soft brown coal. Limited sampling of the upper-most portion indicated a high moisture content (75% daf) and an unusual, hydrogen-rich geochemistry. Lack of identifiable liptinites using either reflected light or fluorescence microscopy suggested a significant bituminite component. Otherwise, the coals appear to be typical for the Tertiary. An estimate of 125 m maximum burial depth was obtained using the bed-moisture content of the coal, which is around the present burial depth.Comparison of present-day thicknesses with inferred burial depths suggests that at least 500 m of section is missing between the Palaeocene coals and the early Miocene coals.Palaeoenvironmental considerations suggest that fire played a significant role in the accumulation of the peats at Raichikhinsk and Yerkovtsi. At Cergeyevka, peat accumulation ended by drowning of the mire.Two tuff beds were recognised within the seam at Raichikhinsk and one in the seam at Yerkovtsi. Correlation of the tuff beds is uncertain but they should prove useful in regional coal seam correlation and interpreting coal depositional environments. Geochemical analysis by XRF was complicated by high loss-on-ignition (LOI) values. Despite extensive alteration, an acid igneous source is implied from the presence of free quartz and TiO2/Al2O3 ratios of 0.02 to 0.05.  相似文献   
135.
In early calcite carbonatites of the Kovdor ore deposit four morphological types of dolomite are represented. In the first type, dolomite microcrystals occur as lamellae enclosed by optically continuous calcite. In the second, dolomite microcrystals occur as segmented rods, plates and xenomorphic grains, enclosed by optically discontinuous calcite, and in the third, dolomite is represented by grains of various morphologies, situated along calcite grain boundaries. The fourth type of dolomite occurs as a fine-grained aggregate, which develops along grain boundaries and cleavage cracks of calcite. From microscopic, scanning electron microscope and microprobe studies of these different types of dolomite microcrystals, as well as the calcite associated with them, it can be concluded that the first type of dolomite was exsolved from magnesian calcite during cooling. The second, and the third types of dolomite microcrystals were formed by recrystallization. The fourth type of dolomite was formed by metasomatic dolomitization. As the result of these two processes-recrystallization and metasomatic dolomitization-early dolomite microcrystals seldom occur. The composition of the early-formed primary magnesian calcite yielded temperatures of exsolution of dolomite from magnesian calcite between 665 and 700°C.  相似文献   
136.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   
137.
Primary magmas at Oldoinyo Lengai: The role of olivine melilitites   总被引:3,自引:1,他引:3  
The paper describes olivine melilitites at Oldoinyo Lengai, Tanzania, and from tuff cones from the Tanzanian rift valley in the vicinity of Oldoinyo Lengai. Oldoinyo Lengai is the only active carbonatite volcano and is distinguished by its alkali-rich natrocarbonatites. Lengai is also unique for its extreme peralkaline silicate lavas related directly to the natrocarbonatites. Primitive olivine melilitites are, according to their Mg# and Ni, Cr contents, the only candidates in the Lengai area for primary melt compositions. Incompatible trace elements, including REE, constrain the melting process in their sub-lithospheric sources to very low degrees of partial melting in the garnet stability field. The strong peralkaline trend at Oldoinyo Lengai is already recognisable in these primary or near-primary melts. More evolved olivine melilitites, with Mg# < 60 allow the fractionation line in its major and trace element expressions to be followed. Nevertheless, a large compositional gap separates the olivine melilitites and olivine-poorer melilitites from the phonolites and nephelinites that form the bulk of the Lengai cone. These silicate lavas show a high degree of peralkalinity and are highly evolved with very low Mg, Ni and Cr. Prominent examples of the recent evolution are the combeite–wollastonite nephelinites that are unique for Lengai. In their Sr, Nd, and Pb isotope relationships the olivine melilitites define a distinct group with the most depleted Sr and Nd ratios and the most radiogenic Pb isotopes. They are closest to a supposed HIMU end member of the Lengai evolution, which is characterised by an extreme spread in isotopic ratios, explained as a mixing line between HIMU and EM1-like mantle components.  相似文献   
138.
Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site‐specific palaeo‐records are needed. Here we present a multi‐proxy study of a 350‐cm‐long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain‐size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, δ13Corg) and stable water isotopes (δ18O, δD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre‐lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post‐drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core‐based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice‐rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst‐affected regions of the Arctic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号