首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
大气科学   6篇
地球物理   30篇
地质学   7篇
海洋学   10篇
天文学   9篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   6篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   5篇
  1998年   1篇
  1995年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
21.
Coupled modelling of surface and subsurface systems is a valuable tool for quantifying surface water–groundwater interactions. In the present paper, the 3-D non-steady state Navier–Stokes equations, after Reynolds averaging and with the assumption of a hydrostatic pressure distribution, are for the first time coupled to the 3-D saturated groundwater flow equations in an Integrated suRface watEr–grouNdwater modEl (IRENE). A finite-difference method is used for the solution of the governing equations of IRENE. A semi-implicit scheme is used for the discretisation of the surface water flow equations and a fully implicit scheme for the discretisation of the groundwater flow equations. The two sets of equations are coupled at the common interface of the surface water and groundwater bodies, where water exchange takes place, using Darcy’s law. A new approach is proposed for the solution of the coupled surface water and groundwater equations in a simultaneous manner, in such a fashion that gives computational efficiency at low computational cost. IRENE is verified against three analytical solutions of surface water–groundwater interaction, which are chosen so that different components of the model can be tested. The model closely reproduces the results of the analytical solutions and can therefore be used for analysing and predicting surface water–groundwater interactions in real-world cases.  相似文献   
22.
Recently, black carbon has been introduced as the form of carbon that may be separated from the biologically mediated carbon cycle thereby representing the non-bioavailable fraction of the estimated organic carbon. It has been speculated that the bioavailability of organic matter may be a limiting factor for the presence of active bacteria within the sediments. In order to address this question, marine sediments were collected from the Thracian Sea (Eastern Mediterranean), a complex system impacted by riverine inputs and Black Sea water masses. In addition to counts of total bacteria, we estimated the fraction of active bacteria by using a destaining step to the DAPI staining method. Black carbon was also estimated following the thermal oxidation method in order to determine the fraction of the refractory organic matter. The fraction of black carbon to total organic carbon varied from 16% to 53% indicating that black carbon constitutes a significant pool of sedimentary organic carbon in the Thracian sea. A fraction ranging from 18% to 97% was scored as nucleoid containing cells. We did not record any significant differences in the fraction of nucleoid-containing bacteria among sediment depths (P<0.05) indicating that there was no accumulation of dead bacterial cells with depth. The same was observed for the fraction of black carbon and bioavailable organic carbon with sediment depth (P<0.05) indicating that benthic consumers are not the key regulators of the organic matter pool in these sediments but have a minor effect. A possible reason for these observations and for the uncoupling between the active bacterial fraction and the bioavailability of organic matter could be (i) the presence of refractory components in the estimated bioavailable organic matter and (ii) the hydrological and geological complexity of the study area. The North Aegean marginal slopes are highly unstable experiencing frequent seismic events. These events are capable of inducing sediment transport from the upper slopes thus altering the entire sediment profile. On the other hand, the significant correlations that were recorded between nucleoid-containing cells and phytopigments (chlorophyll a, phaeopigments, chloroplastic pigment equivalents) at all sediment depths indicate that bacterial communities respond immediately to the deposited phytodetritus, using it as a primary source of carbon and energy. Our data suggests that the Thracian Sea sediments are by no means homogeneous and can best be described as a mosaic controlled by numerous local and regional environmental factors.  相似文献   
23.
This paper presents results of numerical modelling of site response for Thessaloniki, obtained with two different 2D methods; a finite difference and a finite element method. Ground motion across a 2D model of the subsoil of the city has been simulated for vertically incident SH waves. The predominance of locally generated surface waves is very clear in the synthetic seismograms of a weak event and of stronger ones. These results are then compared with the observations in time domain and frequency domain. The role of the soil formations with high attenuation in the lateral propagation and the effect of the differential motion close to the lateral variations are also pinpointed. The stronger events were finally used to compute strong ground motion in order to reveal and to discuss practical engineering aspects such as peak ground acceleration value, the most familiar indicator in seismic norms, the soil to rock spectral coefficients for the period bandwidth of interest, and the aggravation factor in terms of 2D to 1D response spectra as a useful ruler to account for complex site effects.  相似文献   
24.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   
25.
This paper reviews alternative selection procedures based on established methods for incorporating strong ground motion records within the framework of seismic design of structures. Given the fact that time history signals recorded at a given site constitute a random process which is practically impossible to reproduce, considerable effort has been expended in recent years on processing actual records so as to become ‘representative’ of future input histories to existing as well as planned construction in earthquake-prone regions. Moreover, considerable effort has been expended to ensure that dispersion in the structural response due to usage of different earthquake records is minimized. Along these lines, the aim of this paper is to present the most recent methods developed for selecting an ‘appropriate’ set of records that can be used for dynamic analysis of structural systems in the context of performance-based design. A comparative evaluation of the various alternatives available indicates that the current seismic code framework is rather simplified compared to what has actually been observed, thus highlighting both the uncertainties and challenges related to the selection of earthquake records.  相似文献   
26.
27.
Data on the distribution of fCO2 were obtained during a cruise in the Aegean Sea during February 2006. The fCO2 of surface water (fCO2sw) was lower than the atmospheric fCO2 (fCO2atm) throughout the area surveyed and ΔfCO2 values varied from ?34 to ?61 μatm. The observed under-saturation suggests that surface waters in the Aegean represent a sink for atmospheric CO2 during the winter of 2006. Higher fCO2sw values were recorded in the ‘less warm’ and ‘less saline’ shallow northernmost part of the Aegean Sea implying that the lower seawater temperature and salinity in this area play a crucial role in the spatial distribution of fCO2sw.A first estimate of the magnitude of the air–sea CO2 exchange and the potential role of the Aegean Sea in the transfer of atmospheric CO2 was also obtained. The air–sea CO2 fluxes calculated using different gas transfer formulations showed that during February 2006, the Aegean Sea absorbs atmospheric CO2 at a rate ranging from ?6.2 to ?11.8 mmol m?2 d?1 with the shipboard recorded wind speeds and at almost half rate (?3.5 to ?5.5 mmol m?2 d?1) with the monthly mean model-derived wind speed. Compared to recent observations from other temperate continental shelves during winter period, the Aegean Sea acts as a moderate to rather strong sink for atmospheric CO2.Further investigations, including intensive spatial and temporal high-resolution observations, are necessary to elucidate the role of the Aegean Sea in the process of transfer of atmospheric CO2 into the deep horizons of the Eastern Mediterranean.  相似文献   
28.
Some past October Draconid shower meteoroids fell apart in a spray of fragments at the end of their trajectory before slowing down, from which it was concluded that these were among the most fragile meteoroids known. In those instances, the dust could not be reliably traced to a particular return of the parent comet 21P/Giaconini-Zinner. On October 8th, 2011, Earth was predicted to transverse the 1900 A.D. dust ejecta of the comet. In 1900, the comet’s perihelion distance first moved significantly inwards to the Sun and ejection conditions could have been unusual. An airborne observing campaign was organized, with several teams contributing imaging and spectrographic cameras to study the manner in which these meteoroids released the volatile element sodium during the ablation process in the Earth’s atmosphere. IMCCE, ESA, and the SETI Institute contributed spectrographic cameras based on low-light WATEC 902H2 Ultimate, low-light LCC1, and GenII XX1332 image intensified cameras. An outburst was observed, much as predicted. Despite a lack of bright meteors, a total of 15 Draconid spectra were recorded. All show evidence of an early release of sodium. The loss of sodium was observed to coincide with the formation of a distinct wake of fragments. The observations show that 21P/Giacobini-Zinner ejected fragile meteoroids during the return in 1900. Those grains may have lost some sodium even before impacting Earth.  相似文献   
29.
The computational demand of the soil‐structure interaction analysis for the design and assessment of structures, as well as for the evaluation of their life‐cycle cost and risk exposure, has led the civil engineering community to the development of a variety of methods toward the model order reduction of the coupled soil‐structure dynamic system in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to the conventional finite element model simulation of the complete soil‐structure domain, such as the nonlinear lumped spring, the macroelement method, and the substructure partition method. Yet no approach was capable of capturing simultaneously the frequency‐dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall soil‐structure system under strong earthquake ground motion, thus generating an imbalance between the modeling refinement achieved for the soil and the structure. To this end, a dual frequency‐dependent and intensity‐dependent expansion of the lumped parameter modeling method is proposed in the current paper, materialized through a multiobjective algorithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic response is comparatively assessed for both the proposed method and the detailed finite element model. The above expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and amplitude dependence of soil‐foundation systems in the framework of nonlinear seismic analysis of soil‐structure interaction systems.  相似文献   
30.
Until now, climate model intercomparison has focused primarily on annual and global averages of various quantities or on specific components, not on how well the general dynamics in the models compare to each other. In order to address how well models agree when it comes to the dynamics they generate, we have adopted a new approach based on climate networks. We have considered 28 pre-industrial control runs as well as 70 20th-century forced runs from 23 climate models and have constructed networks for the 500 hPa, surface air temperature (SAT), sea level pressure (SLP), and precipitation fields for each run. We then employed a widely used algorithm to derive the community structure in these networks. Communities separate “nodes” in the network sharing similar dynamics. It has been shown that these communities, or sub-systems, in the climate system are associated with major climate modes and physics of the atmosphere (Tsonis AA, Swanson KL, Wang G, J Clim 21: 2990–3001 in 2008; Tsonis AA, Wang G, Swanson KL, Rodrigues F, da Fontura Costa L, Clim Dyn, 37: 933–940 in 2011; Steinhaeuser K, Ganguly AR, Chawla NV, Clim Dyn 39: 889–895 in 2012). Once the community structure for all runs is derived, we use a pattern matching statistic to obtain a measure of how well any two models agree with each other. We find that, with the possible exception of the 500 hPa field, consistency for the SAT, SLP, and precipitation fields is questionable. More importantly, none of the models comes close to the community structure of the actual observations (reality). This is a significant finding especially for the temperature and precipitation fields, as these are the fields widely used to produce future projections in time and in space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号