首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   7篇
  国内免费   4篇
测绘学   4篇
大气科学   27篇
地球物理   53篇
地质学   54篇
海洋学   17篇
天文学   11篇
综合类   1篇
自然地理   16篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2017年   9篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   5篇
  2011年   10篇
  2010年   13篇
  2009年   12篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   12篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1984年   2篇
  1983年   3篇
  1980年   3篇
  1979年   2篇
  1977年   2篇
  1973年   1篇
  1947年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
131.
The Timiskaming earthquake, which occurred near the Quebec-Ontario border at the northwest end of the Western Quebec seismic zone in 1935, is one of the five largest instrumentally recorded southeastern Canadian earthquakes. Previous studies of this earthquake concentrated on modeling teismograms recorded at regional distances, a better constrained focal mechanism is obtained. The waveforms indicate thrust faulting on a moderately dipping northwest striking plane at a depth of 10 km. TheM w of 6.1 determined in this study is in good agreement with previous magnitude estimates (m b 6.1,M s 6.0, andm bLg 6.2–6.3). The focal mechanism is similar to those of many recent small to moderate earthquakes in the region, and the inferred (from theP axis) acting stress of northeast compression is consistent with the overall eastern North American stress field. The Lake Timiskaming Rift Valley in which the earthquake occurred, comprises several northwest striking faults consistent with the strike of the 1935 event. Thus, the 1935 earthquake appears to be a result of faulting on the reactivated Timiskaming graben.  相似文献   
132.
Eelgrass (Zostera marina) forms extensive beds in temperate coastal and estuarine environments worldwide and provides important ecosystem services, including habitat for a wide range of species as well as nutrient cycling and carbon storage. However, little is known about how eelgrass ecosystem structure and services differ naturally among regions. Using large-scale field surveys, we examined differences in eelgrass bed structure, carbon and nitrogen storage, community composition, and habitat services across three distinct regions in Eastern Canada. We focused on eelgrass beds with low anthropogenic impacts to compare natural differences. In addition, we analyzed the relationships of eelgrass bed structure with environmental conditions, and species composition with bed structure and environmental conditions, to elucidate potential drivers of observed differences. Our results indicate that regional differences in eelgrass bed structure were weakly correlated with water column properties, whereas differences in carbon and nitrogen storage were mainly driven by differences in eelgrass biomass. There were distinct regional differences in species composition and diversity, which were particularly linked to temperature, as well as eelgrass bed structure indicating differences in habitat provision. Our results highlight natural regional differences in ecosystem structure and services which could inform spatial management and conservation strategies for eelgrass beds.  相似文献   
133.
Point bars formed by meandering river systems are an important class of sedimentary deposit and are of significant economic interest as hydrocarbon reservoirs. Standard point‐bar models of how the internal sedimentology varies are based on the structure of small‐scale systems with little information about the largest complexes and how these might differ. Here a very large point bar (>25·0 m thick and 7·5 × 13·0 km across) on the Mississippi River (USA) was examined. The lithology and grain‐size characteristics at different parts of the point bar were determined by using a combination of coring and electrical conductivity logging. The data confirm that there is a general fining up‐section along most parts of the point bar, with a well‐defined transition from massive medium‐grained sands below about 9 to 11 m depth up into interbedded silts and fine–medium sand sediment (inclined heterolithic strata). There is also a poorly defined increase in sorting quality at the transition level. Massive medium sands are especially common in the region of the channel bend apex and regions upstream of that point. Downstream of the meander apex, there is much less evidence for fining up‐section. Finer sediment accumulated more readily after the establishment of a compound bar in the later stages of construction, at the terminal apex and in the bar tail. This work implies that the best reservoir sands are likely to be located in the centre of the point bar, deposited in a simple bar system. Reservoir quality decreases towards the bar edge. The early‐stage channel plug is largely composed of coarsening‐upward cycles of silt to clay and is dominated by clay and clayey silt material with poor reservoir characteristics.  相似文献   
134.
Spatial and temporal variability of the subtidal exchange flow at West Pass, an inlet at the entrance to a subtropical lagoon (St. Andrew Bay, Florida), was studied using moored and towed current velocity profiles and hydrographic data. Towed and hydrographic measurements were captured over one diurnal tidal cycle to determine intratidal and spatial changes in flow. Hydrographic profiles over the tidal cycle showed that tidal straining modified density stratification asymmetrically, thus setting up the observed mean flow within the inlet. During the towed survey, the inlet's mean flow had a two-layer exchange structure that was moderately frictional and weakly influenced by Coriolis accelerations. Moored current profiles revealed the additional contribution to the dynamics from centrifugal accelerations. Along channel residual flows changed between unidirectional and exchange flow, depending on the forcing from the along-estuary wind stress and, to a lesser extent, the spring–neap tidal cycle. Increases in vertical shear in the along channel subtidal flow coincided with neap tides and rain pulses. Lateral subtidal flows showed the influence on the dynamics of centrifugal accelerations through a well-developed two-layer structure modulated in magnitude by the spring–neap tidal cycle.  相似文献   
135.
Lignin and pigment biomarkers were analyzed in surface sediments of the Louisiana Continental margin (LCM) to distinguish differences in the degradative state of sedimentary organic matter along and between two major depositional pathways (along shore and offshore to the Mississippi Canyon) from Southwest (SW) Pass in July 2003. Barataria Bay, an inter-distributary estuary, was also assessed as a potential source of terrestrial organic matter to the LCM. Sediment signatures taken along the same pathways after Hurricane Ivan (October 2004) were compared with the pre-Ivan signature to elucidate carbon dynamics after major hurricane events. Density fractions were investigated at key stages across the LCM. Mississippi Canyon sediments are a depocenter for labile and refractory organic matter derived from river and previously deposited shelf sediments. Barataria Bay material may be a contributing source of sedimentary organic matter in shallow shelf areas bordering the bay and is thus potentially important in carbon cycling in sediments of these shallow areas; however, our results show that organic matter inputs from the bay were likely rapidly decomposed and/or diluted. Hurricane Ivan mobilized sedimentary organic carbon (SOC) offshore and homogenized terrestrial sediment parameters and gradients. As observed through pigment concentrations sediments tended to equilibrate to a more steady-state condition within months of the disturbance. Insights from density fractions show that selective degradation and aggregation/flocculation processes were also very important processes during cross-shelf transport. Zooplankton grazing, largely on diatoms and other algae, was a shelf wide phenomenon, however, grazing products dominated the marine-derived SOC in margin sediments west of the birdsfoot delta indicated by the abundance of steryl chlorin esters (SCEs).  相似文献   
136.
Abstract

Effective policies to protect groundwater-dependent ecosystems require robust methods to determine the environmental flows and levels required to support species and processes. Frameworks to support groundwater management must incorporate the relationships between hydrology and species and ecological processes. These hydro-ecological relationships can be used to develop quantitative, measurable thresholds that are sensitive to changes in groundwater quantity. Here we provide a case study from a group of fens in central Oregon, USA, that are used for cattle watering, but also support numerous sensitive species. We developed quantitative relationships between the position of the water table and wetland indicator plant species and the process of peat development, to propose groundwater withdrawal thresholds. A maximum depth to water table of –0.9 to –34.8 cm for fen plants and –16.6 to –32.2 cm for peat accretion can be tolerated in these wetlands. Defining hydro-ecological relationships as thresholds can support management decisions.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Aldous, A.R. and Bach, L.B., 2014. Hydro-ecology of groundwater-dependent ecosystems: applying basic science to groundwater management. Hydrological Sciences Journal, 59 (3–4), 530–544.  相似文献   
137.
Organized convection in the tropics occurs across a range of spatial and temporal scales and strongly influences cloud cover and humidity. One mode of organization found is “self-aggregation,” in which moist convection spontaneously organizes into one or several isolated clusters despite spatially homogeneous boundary conditions and forcing. Self-aggregation is driven by interactions between clouds, moisture, radiation, surface fluxes, and circulation, and occurs in a wide variety of idealized simulations of radiative–convective equilibrium. Here we provide a review of convective self-aggregation in numerical simulations, including its character, causes, and effects. We describe the evolution of self-aggregation including its time and length scales and the physical mechanisms leading to its triggering and maintenance, and we also discuss possible links to climate and climate change.  相似文献   
138.
Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.  相似文献   
139.
We exploit a natural experiment in Boulder Creek, a ~ 30 km2 drainage in the Santa Cruz mountains, CA, USA to explore how an abrupt increase in the caliber of bedload sediment along a bedrock channel influences channel morphology in an actively uplifting landscape. Boulder Creek's bedrock channel, which is entirely developed on weak sedimentary rock, has a high flow shear stress that is about 3.5 times greater where it transports coarse (~ 22 cm D50) diorite in the lower reaches in comparison with the upstream section of the creek that transports only relatively finer bedload (~2 cm D50) derived from weak sedimentary rocks. In addition, Boulder Creek's channel abruptly widens and shallows downstream and transitions from partial to nearly continuous alluvial cover where it begins transporting coarse diorite. Boulder Creek's tributary channels are also about three times steeper where they transport diorite bedload, and within the Santa Cruz mountains channels in sedimentary bedrock are systematically steeper when >50% of their catchment area is within crystalline basement rocks. Despite this clear control of coarse sediment size on channel slopes, the threshold of motion stress for bedload, alone, does not appear to control channel profile slopes here. Upper Boulder Creek, which is starved of coarse sediment, maintains high flow shear stresses well in excess of the threshold for motion. In contrast, lower Boulder Creek, with a greater coarse sediment supply, exerts high flow stresses much closer to the threshold for motion. We speculate that upper Boulder Creek has evolved to sustain partial alluvial cover and transfer greater energy to the bed via bedload impacts to compensate for its low coarse sediment supply. Thus bedload supply, bedrock erosion efficiency, and grain size all appear to influence channel slopes here. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
140.
Fluvial bedforms generate a turbulent wake that can impact suspended-sediment settling in the passing flow. This impact has implications for local suspended-sediment transport, bedform stability, and channel evolution; however, it is typically not well-considered in geomorphologic models. Our study uses a three-dimensional OpenFOAM hydrodynamic and particle-tracking model to investigate how turbulence generated from bedforms and the channel bed influences medium sand-sized particle settling, in terms of the distribution of suspended particles within the flow field and particle-settling velocities. The model resolved the effect of an engineered bedform, which altered the flow field in a manner similar to a natural dune. The modelling scenarios alternated bed morphology and the simulation of turbulence, using detached eddy simulation (DES), to differentiate the influence of bedform-generated turbulence relative to that of turbulence generated from the channel bed. The bedform generated a turbulent wake that was composed of eddies with significant anisotropic properties. The eddies and, to a lesser degree, turbulence arising from velocity shear at the bed substantially reduced settling velocities relative to the settling velocities predicted in the absence of turbulence. The eddies tended to advect sediment particles in their primary direction, diffuse particles throughout the flow column, and reduced settling likely due to production of a positively skewed vertical-velocity fluctuation distribution. Study results suggest that the bedform wake has a significant impact on particle-settling behaviour (up to a 50% reduction in settling velocity) at a scale capable of modulating local suspended transport rates and bedform dynamics. © 2020 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号