首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   10篇
  国内免费   6篇
测绘学   13篇
大气科学   30篇
地球物理   91篇
地质学   148篇
海洋学   24篇
天文学   90篇
自然地理   56篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   9篇
  2016年   9篇
  2015年   8篇
  2014年   9篇
  2013年   17篇
  2012年   12篇
  2011年   12篇
  2010年   15篇
  2009年   22篇
  2008年   22篇
  2007年   14篇
  2006年   22篇
  2005年   10篇
  2004年   13篇
  2003年   11篇
  2002年   9篇
  2001年   5篇
  2000年   12篇
  1999年   10篇
  1998年   11篇
  1997年   4篇
  1996年   7篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   5篇
  1991年   12篇
  1990年   8篇
  1989年   11篇
  1988年   8篇
  1987年   3篇
  1986年   7篇
  1985年   10篇
  1984年   8篇
  1983年   8篇
  1982年   6篇
  1980年   7篇
  1979年   5篇
  1977年   6篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1971年   4篇
  1970年   4篇
  1967年   2篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
31.
From Casper Mountain; at its northern end, to the northwestern margin of the Laramie anorthosite—syenite complex, in its central parts, the Laramie Range is underlain by granite and granitic gneiss that has a minimum age of 2.54 ± 0.04 Ga (Rb/Sr whole-rock isochron) and by metasedimentary rocks, including marble and quartzite, that appear to overlie the granitic gneiss nonconformably (minimum age: 1.7 Ga based on several horn-blende K/Ar dates). Southward from the anorthosite—syenite complex into Colorado, the Range is underlain chiefly by the Sherman Granite (1.41 Ga; Peterman and Hedge, 1968) and scattered patches of gneiss that are not dated, but are tentatively correlated wit similar gneiss in the southern Medicine Bow Mountains and in the Colorado Front Range, where they are dated as ? 1.7 Ga (Peterman and Hedge, 1968).The Laramie anorthosite—syenite complex (minimum age: ? 1.42 Ga or ? 1.51 Ga if a hornblende K/Ar date is accepted) apparently intruded the suture separating the old (? 2.5 Ga) continental edge from younger (? 1.7 Ga) geosynclinal rocks. The suture, which manifests itself as the Mullen Creek—Nash Fork shear zone in the Medicine Bow Mountains, also is the boundary between ensialic and ensimatic geosynclinal deposition that occurred during the interval 1.7–2.5 Ga ago.K/Ar dates on biotite and muscovite from rocks north of the anorthosite—syenite complex grade from 2.5 Ga on Casper Mountain down to 1.38 Ga near the complex. Near its northern tip, the Laramie Range is crossed by a geochronologic front, separating 2.5 Ga old gneiss whose K/Ar dates were not lowered by subsequent metamorphism from 2.5 Ga old gneiss whose mica dates were reset between 1.4 and 1.6 Ga ago.  相似文献   
32.
The magmatic systems that give rise to voluminous crystal-poor rhyolite magma bodies can be considered to operate on two contrasting timescales: Those governed by longer-term processes by which a magma acquires its chemical and isotopic characteristics (e.g., fractional crystallisation and assimilation), and those operating at shorter timescales during the physical accumulation of the melt-dominant magma body that finally erupts. We explore the compositional and textural relationships between amphibole and orthopyroxene crystals from the 25.4 ka, 530 km3 (magma) Oruanui eruption products (Taupo volcano, New Zealand) to investigate how processes related to the physical assembly of the pre-eruptive magma body are represented in the crystal record. Over 90 % of orthopyroxenes from the volumetrically dominant high-SiO2 (>74 wt%) rhyolite pumices record textural evidence for a significant disequilibrium event (partial dissolution ± resorption of cores and interiors) prior to the growth of 40–500 μm thick rim zones. This dissolution/regrowth history of orthopyroxene is recorded in the chemistry of co-crystallising amphiboles as a prominent inflection in the concentrations of Mn and Zn, two elements notably enriched in orthopyroxene relative to amphibole. Textural and chemical features, linked with in situ thermobarometric estimates, indicate that a major decompression event preceded the formation of the melt-dominant body. The decompression event is inferred to represent the extraction of large volumes of melt plus crystals from the Oruanui crystal mush/source zone at pressures of 140–300 MPa (~6–12 km depth). Orthopyroxene underwent partial dissolution during ascent before reestablishing in the melt-dominant magma body at pressures of 90–140 MPa (~3.5–6 km). We model Fe–Mg diffusion across the core-rim boundaries along the crystallographic a or b-axes to constrain the timing of this decompression event, which marked establishment of the melt-dominant magma body. Maximum modelled ages indicate that this event did not begin until ~1,600 years before eruption, consistent with constraints from zircon model-age spectra. Once extraction began, it underwent runaway acceleration with a peak extraction age of ~230 years, followed by an apparent period of stasis of ~60 years prior to eruption. The rapidity of the extraction and accumulation processes implies the involvement of a dynamic driving force which, in the rifted continental arc setting of the Taupo Volcanic Zone, seems likely to be represented by magma-assisted extensional tectonic processes.  相似文献   
33.
34.
Fracture surfaces of a natural carrollite specimen have been characterised by synchrotron and conventional X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy. For the synchrotron X-ray measurements, the mineral surfaces were prepared under clean ultra high vacuum and were unoxidised. The characterisation was undertaken primarily to establish unequivocally the oxidation state of the Cu in the mineral, but also to obtain information on the electronic environments of the Co and S, and on the surface species. Experimental and simulated Cu L2,3-edge absorption spectra confirmed an oxidation state of CuI, while Co 2p photoelectron and Co L2,3 absorption spectra were largely consistent with the CoIII established previously by nuclear magnetic resonance spectroscopy. S 2p photoelectron spectra provided no evidence for S to be present in the bulk in more than one state, and were consistent with an oxidation state slightly less negative than S-II. Therefore it was concluded that carrollite can be best represented by CuICoIII2(S4)-VII. The CuI oxidation state is in agreement with that expected for Cu tetrahedrally coordinated by S, but is in disagreement with the CuII deduced previously from some magnetic, magnetic resonance and Cu L-edge X-ray absorption spectroscopic measurements. A significant concentration of S species with core electron binding energies both lower and higher than the bulk value were formed at fracture surfaces, and these entities were assigned to monomeric and oligomeric surface S species. The density of Cu d states calculated for carrollite differed from that previously reported but was consistent with the observed Cu L3 X-ray absorption spectrum. The initial oxidation of carrollite in air under ambient conditions was confirmed to be congruent, unlike the incongruent reaction undergone by a number of non-thiospinel sulfide minerals.  相似文献   
35.
36.
Data from analyses of three coexisting pairs of pyroxenes with a wide range of Fe content from each of two localities are used to show the large systematic variation and predictable correlation of Fe (or Mg) of a pyroxene with its content of Al, Mn and Na in mafic granulites. Comparisons of pyroxenes can then be made more meaningful by normalizing Al, or other elements, to an appropriate Mg value. As both P and T may affect the element distribution of the two pyroxenes differently (especially Al and Na) the factor used in normalizing is found to vary from region to region.  相似文献   
37.
The granulites of the Fraser Range are assumed to have formed in a carbon-rich fluid, and are generally devoid of hornblende, and lack obvious hydrous retrograde features. In these granulites, pyroxene, garnet, plagioclase and quartz are the minerals most likely to retain the oxygen isotope ratios fixed at an early stage of initial granulite metamorphism. Temperature estimates using these minerals commonly suggest that oxygen isotopic exchange ceased in the range 600 to 680°C. The peak metamorphic temperature was probably ~ 850°C as based on the stability fields of the coexisting minerals and some cation temperatures from coexisting pyroxenes in these rocks. Ilmenite may be slightly out of isotopic equilibrium with the other minerals. Thus, grains of quartz, feldspar, pyroxene and ilmenite have suffered considerable oxygen isotopic exchange during the retrogressive phase of the metamorphism, in spite of the fact that very little water was present in these granulites. The observed deviation from the peak metamorphic temperatures can be explained by essentially closed system solid-state diffusion (on at least a scale of centimetres) during slow cooling of the rocks from ~850 to 650°C, followed by more rapid cooling down to ~ 300°C. Such an explanation is not at variance with the radiometric data available for rocks from the area, which suggest that the latter phase could have involved uplift rates of ?0.5 mm/yr for a period of about 40 Ma. Wholerock δ18O values on non-quartzose mafic granulites, about 7.2%., fall within the range of basalts affected by seafloor weathering.  相似文献   
38.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
39.
40.
Concentrations of atmospheric Hg species, elemental Hg (Hg°), reactive gaseous Hg (RGM), and fine particulate Hg (Hg-PM2.5) were measured at a coastal site near Weeks Bay, Alabama from April to August, 2005 and January to May, 2006. Mean concentrations of the species were 1.6 ± 0.3 ng m−3, 4.0 ± 7.5 pg m−3 and 2.7 ± 3.4 pg m−3, respectively. A strong diel pattern was observed for RGM (midday maximum concentrations were up to 92.7 pg m−3), but not for Hg° or Hg-PM2.5. Elevated RGM concentrations (>25 pg m−3) in April and May of 2005 correlated with elevated average daytime O3 concentrations (>55 ppbv) and high light intensity (>500 W m−2). These conditions generally corresponded with mixed continental-Gulf and exclusively continental air mass trajectories. Generally lower, but still elevated, RGM peaks observed in August, 2005 and January–March, 2006 correlated significantly (p < 0.05) with peaks in SO2 concentration and corresponded to periods of high light intensity and lower average daytime O3 concentrations. During these times air masses were dominated by trajectories that originated over the continent. Elevated RGM concentrations likely resulted from photochemical oxidation of Hg° by atmospheric oxidants. This process may have been enhanced in and by the near-shore environment relative to inland sites. The marine boundary layer itself was not found to be a significant source of RGM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号