首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   19篇
  国内免费   2篇
测绘学   10篇
大气科学   32篇
地球物理   89篇
地质学   162篇
海洋学   22篇
天文学   53篇
自然地理   18篇
  2024年   3篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   5篇
  2019年   8篇
  2018年   22篇
  2017年   20篇
  2016年   26篇
  2015年   15篇
  2014年   20篇
  2013年   30篇
  2012年   26篇
  2011年   29篇
  2010年   18篇
  2009年   22篇
  2008年   11篇
  2007年   17篇
  2006年   15篇
  2005年   19篇
  2004年   13篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有386条查询结果,搜索用时 0 毫秒
381.
The origin of the spin of planets and stars is, to a certain extent, still unexplained. In general, we attribute their rotation to the swirl of their constituent primitive gases. In this paper, we try to show that the rotation of celestial bodies depends only on their mass, apparent radius and tilt of their spin axes. We reach this conclusion within the framework of gravitomagnetism, implied by the Einstein’s general relativity theory (GR). Our results show that it might possible, in principle, to calculate the mass of spinning objects by measuring their apparent radius, the speed of rotation and the tilt of the axis of rotation.  相似文献   
382.
383.
Coupling morphological, sedimentological, and rheological studies to numerical simulations is of primary interest in defining debris‐flow hazard on alluvial fans. In particular, numerical runout models must be carefully calibrated by morphological observations. This is particularly true in clay‐shale basins where hillslopes can provide a large quantity of poorly sorted solid materials to the torrent, and thus change both the mechanics of the debris flow and its runout distance. In this context, a study has been completed on the Faucon stream (southeastern French Alps), with the objectives of (1) defining morphological and sedimentological characteristics of torrential watersheds located in clay‐shales, and (2) evaluating through a case study the scouring potential of debris flows affecting a clay‐shale basin. Morphological surveys, grain‐size distributions and petrographic analyses of the debris‐flow deposits demonstrate the granular character of the flow during the first hectometre, and its muddy character from there to its terminus on the debris fan. These observations and laboratory tests suggest that the contributing areas along the channel have supplied the bulk of the flow material. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
384.
The Myra mine, now inactive, produced Zn and Cu concentrates from a Zn-rich, Kuroko-type, volcanogenic massive sulfide deposit located in the mountainous interior of Vancouver Island. The climate at the site is classified as “Marine West Coast”, with annual precipitation exceeding 2200 mm. Water from a losing stream on the mountainside above the mine follows preferential, fracture-controlled pathways to the upper workings before draining through the 10-Level portal. With a view toward mine decommissioning, portal discharge rate was monitored continuously over a 17-month period during which 46 water samples were collected. Effluent chemistry, dominated by Ca, HCO3 and SO4, shows moderate to high total base metal concentrations and near-neutral pH. Carbonatization, mainly of mafic rocks in the hangingwall, provides significant acid neutralizing potential. Metal concentrations vary seasonally, with smaller spikes associated with summer storm events, and a main peak associated with flushing of the workings during the first heavy autumn rains. Aqueous speciation modeling suggests that Fe and Al concentrations are controlled by the solubilities of hydrous ferric oxides and microcrystalline gibbsite, respectively. Concentrations of Zn, Cu and Cd appear controlled by sorption rather than by the solubilities of mineral phases. A comparison of precipitate concentrations observed in portal effluent with predictions from mass balance (inverse) modeling results suggests that less than 5% of the precipitated Fe and Al hydroxides are transported from the mine. However, amounts of sorbed Cu, Zn and Cd measured in the effluent are only slightly lower than modeled values. This suggests that the small fraction of (probably finer) Fe precipitates in portal effluent sorbs most of the Zn, Cu and Cd predicted by modeling. Based on mass balance calculations, metal loadings are explained by the oxidation of 3830 kg of pyrite, 600 kg of sphalerite and 190 kg of chalcopyrite, annually. Circum-neutral drainage conditions are maintained by the reaction of almost 19,800 kg of calcite, annually.  相似文献   
385.
386.

This paper presents an analysis of two large rock toppling/sliding events which occurred in January 2014 and February 2019 at the Cliets unstable slope (Savoie, French Alps). To understand the mechanism involved and its control by external forcings, a multi-technique analysis approach is used combining geological observations, meteorological data analysis, topographic measurements and simple physical modeling. The pre-failure stage of the events is more particularly analyzed. No direct relationships are found between triggering factors and surface motion though a kinematics analysis highlights the transition toppling-sliding. It showed that, at first order, this transition occurred 4 years before the first failure of 2014, while it happened 2 months before the second failure of 2019. From this date, the environment is considered like a block sliding on an inclined plane. By applying a frictional model (Helmstetter et al. in Journal of Geophysical Research: Solid Earth 109(B2), 2004), we illustrated that the two events belong to an unstable velocity-weakening sliding regime. The time to failure (Voight in Science 243(4888):200–203, 1989) is forecasted with the model, and the results are consistent with the observations. They confirm that the gravitational factor is predominant over the triggering factors for the two events.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号