首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1717篇
  免费   84篇
  国内免费   48篇
测绘学   59篇
大气科学   131篇
地球物理   360篇
地质学   601篇
海洋学   117篇
天文学   431篇
综合类   10篇
自然地理   140篇
  2024年   5篇
  2023年   13篇
  2022年   10篇
  2021年   36篇
  2020年   42篇
  2019年   39篇
  2018年   81篇
  2017年   68篇
  2016年   78篇
  2015年   74篇
  2014年   79篇
  2013年   113篇
  2012年   68篇
  2011年   99篇
  2010年   81篇
  2009年   90篇
  2008年   90篇
  2007年   94篇
  2006年   77篇
  2005年   60篇
  2004年   66篇
  2003年   53篇
  2002年   48篇
  2001年   36篇
  2000年   44篇
  1999年   36篇
  1998年   21篇
  1997年   23篇
  1996年   19篇
  1995年   11篇
  1994年   16篇
  1993年   11篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1985年   12篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   8篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1973年   4篇
排序方式: 共有1849条查询结果,搜索用时 171 毫秒
531.
532.
Gold mineralization at Kochkar (Urals, Russia) is hosted mainly by quartz lodes, which developed at lithological contacts between mafic dikes and granitoids of the Plast massif during late Carboniferous to early Permian, regional E–W compression in the East Uralian Zone (EUZ). The alteration mineralogy in mafic dikes comprises biotite, actinolite, albite, K-feldspar, quartz, epidote, tourmaline, sericite, pyrite, arsenopyrite, chalcopyrite, sphalerite, fahlores, galena, bismuthinite, and gold, and in Plast granitoids quartz, sericite, calcite, epidote, and ore minerals. Geochemically, an enrichment of Si, K, Rb, Ba, S, base metals, W, and Au can be observed. The ore fluid had δ18O values between 8.2‰ and 9.5‰ typical for metamorphic or deep magmatic fluids. The tectonometamorphic evolution of the EUZ is marked by peak metamorphic conditions at 635±40°C and 5–6 kbar through 500±20°C during gold mineralization, and 300–350°C and 2–3 kbar. The last event was dated on a late, barren quartz vein formed during greenschist facies metamorphism at 265±3 Ma by the Rb–Sr method. Fluids related to this overprint had a δ18O value of 5.2‰ and an initial 87Sr/86Sr ratio of 0.70685 indicating that they are largely equilibrated with metamorphic lithologies of the EUZ. The Plast granitoids and the adjacent Borisov granite, which was dated at 358±23 Ma (U–Pb zircon age), have an adakitic character. This, together with the arc-signature of the mafic dikes, supports the setting of the EUZ within the Valerianovsky continental arc. Eastward subduction of the Uralian Ocean below this arc began during the late Devonian to early Carboniferous. Between 320 and 265 Ma, the oblique closure of the ocean resulted in doming of granitoid massifs in a sinistral transpressional regime, subsequent retrograde gold mineralization during E–W compression and a later greenschist facies overprint. This long-lasting retrograde evolution of the EUZ was caused by the lack of postcollisional collapse. Heat for a “deep-later" type of metamorphism and triggering the auriferous fluid system was supplied by radiogenic heating of an overthickened crust. The greenschist facies overprint at Kochkar and coeval crustal melting in the EUZ was additionally initiated by local external heating of the terrane. This could have been caused by syn- to postcollisional slab rollback or delamination resulting in magmatic underplating of the EUZ, which postdates orogenic gold mineralization at Kochkar. The tectonic interpretation of the EUZ indicates that gold mineralization at Kochkar formed in a mid-crustal environment of a continental magmatic arc at the cessation of active subduction predating post orogenic plutonism.  相似文献   
533.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   
534.
A primitive equation ocean circulation model in nonlinear terrain-following coordinates is applied to a decadal-length simulation of the circulation in the North Atlantic Ocean. In addition to the stretched sigma coordinate, novel features of the model include the utilization of a weakly dissipative, third-order scheme for tracer advection, and a conservative and constancy-preserving time-stepping algorithm. The objectives of the study are to assess the quality of the new terrain-following model in the limit of realistic basin-scale simulations, and to compare the results obtained with it against those of other North Atlantic models used in recent multi-model comparison studies.The new model is able to reproduce many features of both the wind-driven and thermohaline circulation, and to do so within error bounds comparable with prior model simulations (e.g., CME and DYNAMO). Quantitative comparison with comparable results obtained with the Miami Isopycnic Coordinate Model (MICOM) show our terrain-following solutions are of similar overall quality when viewed against known measures of merit including meridional overturning and heat flux, Florida Straits and Gulf Stream transport, seasonal cycling of temperature and salinity, and upper ocean currents and tracer fields in the eastern North Atlantic Basin. Sensitivity studies confirm that the nonlinear vertical coordinate contributes significantly to model fidelity, and that the global inventories and spatial structure of the tracer fields are affected in important ways by the choice of lateral advection scheme.  相似文献   
535.
The ophiolitic mélange in the uppermost tectonic unit of the Cretan nappe pile contains crystalline slices which consist of a low-pressure/high-temperature metamorphic sequence and synmetamorphic intrusions, ranging in composition from diorite to granite. The plutonic rocks conform to two different igneous suites, dominated by diorites in eastern, and granites in central Crete, displaying I-type and A-type characters, respectively. Some of the granites from central Crete are classified as transitional I/S-type. They are closely associated with migmatitic paragneisses. Based on major and trace element, REE, Sr- and Nd-isotope geochemistry, the mafic members of both suites are derived from a depleted mantle source. The higher concentrations of P and Ti in the mafic members of the igneous suite in central Crete and the deviant trend of the whole suite may be explained by a different mantle source or a lower degree of partial melting. In both suites, magmatic evolution was governed by fractional crystallization of amphibole/clinopyroxene, plagioclase and minor phases. In addition, mixing or mingling of compositionally different magmas is indicated for the intrusive suite of eastern Crete whereas in central Crete the magma composition was at least partially modified through assimilation of (meta)pelites. The geochemical results suggest that the plutonic rocks formed in a supra-subduction zone setting. However, a formation during continental lithospheric extension cannot be ruled out. Published and new Rb–Sr and K–Ar dates on amphiboles and biotites from intrusive rocks and their metamorphic country rocks show that the peak of the low-P/high-T metamorphism and the intrusion of the two igneous suites testify to the same thermal event of Late Cretaceous age. A similar Late Cretaceous association of metamorphic and plutonic rocks has been described from the uppermost tectonic unit in the Attic–Cycladic Crystalline Complex. Together with the Cretan occurrences, they form a small sector radiating SSW along a distance of 300 km, across the general trend of the tectonic zones in the Hellenic orogen. This N–S alignment is regarded as a primary feature which may delineate the frontier zone between the Hellenides and the Taurides. The real paleogeographic position and geodynamic significance of the Late Cretaceous low-pressure/high-temperature belt, however, remains enigmatic. Received: 1 June 1999 / Accepted: 2 February 2000  相似文献   
536.
We present near-infrared broad-band polarization images of the nuclear regions of the Circinus galaxy in the J , H and K bands. For the first time the south-eastern reflection cone is detected in polarized light, which is obscured at optical wavelengths behind the galactic disc. This biconical structure is clearly observed in J - and H -band polarized flux, whilst in the K band a more compact structure is detected. Total flux J − K and H − K colour maps reveal a complex colour gradient toward the south-east direction (where the Circinus galactic disc is nearer to us). We find enhanced extinction in an arc-shaped structure, at about 200 pc from the nucleus, probably part of the star formation ring.
We model the polarized flux images with the scattering and torus model of Young et al., with the same basic input parameters as used by Alexander et al. in the spectropolarimetry modelling of Circinus. The best fit to the polarized flux is achieved with a torus radius of ∼16 pc, and a visual extinction A V , through the torus, to the near-infrared emission regions of >66 mag.  相似文献   
537.
Abstract— We report in situ measurements of O‐isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoia. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O‐isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O‐0.52 × δ18O) value is about ?1%‰. In contrast, the compositions of nearby primary (chondrule), low‐FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from ?3 to ?9%‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoia imply that the O‐isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoia the fayalite and magnetite differ in δ18O by ~20%‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoia magnetite and fayalite may indicate formation in isotopic equilibrium in a water‐rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8%‰) lower than that in that incorporated into the LL parent body (Choi et al, 1998), which suggests that the O‐isotopic composition of the nebular gas was spatially or temporally variable.  相似文献   
538.
An analytical model is presented for the evolution of powerful double radio sources on small physical scales less than about 100 kpc when radiative losses can be neglected. The self-similar model of Kaiser & Alexander is extended to allow for expansion in an atmosphere with a King profile. Distribution functions for the number of sources in a logarithmic interval of linear size within a flux-limited sample are calculated and compared with observation. The observational data can be reproduced if it is assumed that there exists a population of sources that evolve and survive to sizes greater than the core radius, together with a population that suffer disruption of their jets before escaping the core radius. The latter population, while they may be regarded as frustrated sources, are not old sources, but just short-lived.  相似文献   
539.
Throughout the Holocene, caliche has been a ubiquitous technological resource for the people of the Southern High Plains. Archaeological sites on the Southern High Plains often contain thermal features that appear to utilize caliche nodules in various cultural processes. These processes usually involve some degree of thermal dynamic alteration to the caliche, identified in the archaeological record as fire‐scorched or blackened nodules. Previous studies of the pyrodynamic properties of caliche have focused on quantification of color and fracture patterns within a laboratory setting, without direct involvement of cultural processes or problems associated with thermal features. Thermal alteration variables of caliche are examined from an actualistic perspective, utilizing previously excavated basin feature geometry and local caliche outcrops. Results indicate that sustained, intense heating of caliche (above 204°C) causes significant, but variable, structural transformations at the specimen level. The experimental use of shallow basin hearths demonstrates that hearth structures were easily capable of achieving and sustaining temperatures that would result in the physical alteration of individual caliche nodules, defined here as hearthstones. The broader implications of this study suggest that the interpretation of archaeological hearthstone assemblages should reflect variability, as observed during this experiment. © 2005 Wiley Periodicals, Inc.  相似文献   
540.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号