首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   18篇
  国内免费   4篇
测绘学   12篇
大气科学   32篇
地球物理   131篇
地质学   192篇
海洋学   22篇
天文学   139篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   36篇
  2015年   28篇
  2014年   36篇
  2013年   32篇
  2012年   29篇
  2011年   33篇
  2010年   26篇
  2009年   36篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   18篇
  2004年   17篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有554条查询结果,搜索用时 15 毫秒
31.
This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5-50 μg m−3). Minor and trace element concentrations ranged from about 0.001 to 1 μg m−3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a−1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a−1 (Al, Fe, Si) to 0.01-0.1 t a−1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.  相似文献   
32.
Between 1994 and 2010, we completed 16 thermal surveys of Vulcano’s Fossa fumarole field (Aeolian Islands, Italy). In each survey, between 400 and 1,200 vent temperatures were collected using a thermal infrared thermometer from distances of ~1?m. The results show a general decrease in average vent temperature during 1994–2003, with the average for the entire field falling from ~220°C in 1994 to ~150°C by 2003. However, between 2004 and 2010, we witnessed heating, with the average increasing to ~190°C by 2010. Alongside these annual-scale field-wide trends, we record a spatial re-organisation of the fumarole field, characterised by shut down of vent zones towards the crater floor, matched by rejuvenation of zones located towards the crater rim. Heating may be expected to be associated with deflation because increased amounts of vaporisation will remove volume from the hydrothermal system Gambino and Guglielmino (J Geophys Res 113:B07402, 2008). However, over the 2004–2010 heating period, no ground deformation was observed. Instead, the number of seismic events increased from a typical rate of 37 events per month during 1994–2000 to 195 events per month during 2004–2010. As part of this increase, we noticed a much greater number of high-frequency events associated with rock fracturing. We thus suggest that the heating event of 2004–2010 was the result of changed permeability conditions, rather than change in the heat supply from the deeper magmatic source. Within this scenario, cooling causes shut down of lower sectors and re-establishment of pathways located towards the crater rim, causing fracturing, increased seismicity and heat flow in these regions. This is consistent with the zone of rejuvenation (which lies towards and at the rim) being the most favourable location for fracturing given the stress field of the Fossa cone Sch?pa et al. (J Volcanol Geotherm Res 203:133–145, 2011); it is also the most established zone, having been active at least since the early twentieth century. Our data show the value of deploying multi-disciplinary geophysical campaigns at degassing (fumarolic) hydrothermal systems. This allows more complete and constrained understanding of the true heat loss dynamics of the system. In the case study presented here, it allows us to distinguish true heating from apparent heating phases. While the former are triggered from the bottom-up, i.e. they are driven by increases in heat supply from the magmatic source, the latter are triggered from the top-down, i.e. by changing permeability conditions in the uppermost portion of the system to allow more efficient heat flow over zones predisposed to fracturing.  相似文献   
33.
The availability of reliable constitutive models linking the bulk electric properties of porous media to their inner structure is a key requirement for useful quantitative applications of noninvasive methods. This study focuses on the use of dielectric measurements to monitor fluid saturation changes in porous materials. A number of empirical, semi-empirical and theoretical relationships currently exists that link the bulk dielectric constant with volumetric water content. One such relationship, named complex refractive index model or Lichteneker-Rother model has been extensively applied in recent years. Here we first analyse the characteristics of this Lichteneker-Rother model by means of theoretical considerations. This theoretical analysis indicates that the Lichteneker-Rother exponent is dependent upon the geometrical properties of the porous structure, as well as the permittivity contrast between the different phases. Pore-scale modelling and experimental data further support this result. The parameter estimation robustness in presence of synthetic data error is also assessed. This demonstrates that Lichteneker-Rother parameters cannot, in general, be independently identified on the basis of bulk dielectric constant versus moisture content data.  相似文献   
34.
The paper deals with the problem of the existence of a normal form for a nearly-integrable real-analytic Hamiltonian with aperiodically time-dependent perturbation decaying (slowly) in time. In particular, in the case of an isochronous integrable part, the system can be cast in an exact normal form, regardless of the properties of the frequency vector. The general case is treated by a suitable adaptation of the finite order normalization techniques usually used for Nekhoroshev arguments. The key point is that the so called “geometric part” is not necessary in this case. As a consequence, no hypotheses on the integrable part are required, apart from analyticity. The work, based on two different perturbative approaches developed by Giorgilli et al., is a generalisation of the techniques used by the same authors to treat more specific aperiodically time-dependent problems.  相似文献   
35.
As a result of resonance overlap, planetary systems can exhibit chaotic motion. Planetary chaos has been studied extensively in the Hamiltonian framework, however, the presence of chaotic motion in systems where dissipative effects are important, has not been thoroughly investigated. Here, we study the onset of stochastic motion in presence of dissipation, in the context of classical perturbation theory, and show that planetary systems approach chaos via a period-doubling route as dissipation is gradually reduced. Furthermore, we demonstrate that chaotic strange attractors can exist in mildly damped systems. The results presented here are of interest for understanding the early dynamical evolution of chaotic planetary systems, as they may have transitioned to chaos from a quasi-periodic state, dominated by dissipative interactions with the birth nebula.  相似文献   
36.
Three-dimensional (3D) seismic data from the southern Danish North Sea were used to analyse the morphology and spatial distribution of depressions in the Danian Chalk deposit. Previously, these depressions were either interpreted as karst structures or pockmarks. The observed depressions occur in an interval from 25 ms below to 12 ms above the Top Chalk surface. Three types of depressions were differentiated based on their plan-view geometry and their degree of symmetry: Type 1, comprising sub-circular and symmetrical depressions, is the dominant group (ca. 70 %). Type 2, elongated and symmetrical depressions, represents only a small fraction (ca. 5 %). The elongated and asymmetrical depressions of Type 3 compose ca. 25 %. In cross section, each depression type can be either characterised by a V- or a U-shape. The maximum size of the depressions ranges from 50 to 580 m, with an average internal depth of 10 m. We interpret the depressions as pockmarks formed by the expulsion of biogenic or thermogenic fluids at the Danian seafloor. Likely, the initial form of the pockmarks has been circular (Type 1) and was subsequently modified for Types 2 and 3 to an elongated form by currents. The long axis of the pockmarks is interpreted to represent the effective current direction. The inferred direction is sub-parallel to the palaeobathymetric contours. The 3D seismic interpretation of pockmarks presented in this paper contributes to the understanding of fluid migration and palaeocirculation patterns during the sedimentation of the terminal Chalk Group in the southern Danish North Sea.  相似文献   
37.
Turbidites crop out extensively in the Northern Apennine mountains (Italy). The huge amounts of groundwater drained by tunnels, built for the high speed railway connection between Bologna and Florence, demonstrate the aquifer-like behaviour of these units, up to now considered as aquitards. A conceptual model of groundwater flow systems (GFS) in fractured aquifers of turbidites is proposed, taking into account both system natural state and the perturbation induced by tunnel drainage. Analysis of hydrological data (springs, streams and tunnel discharge), collected over 10 years, was integrated with analysis of hydrochemical and isotopic data and a stream-tunnel tracer test. Hydrologic recession analysis of undisturbed conditions is a key tool in studying turbiditic aquifer hydrogeology, permitting the discrimination of GFS, the estimation of recharge relative to the upstream reach portion and the identification of springs most vulnerable to tunnel drainage impacts. The groundwater budgeting analysis provides evidence that the natural aquifer discharge was stream-focused through GFS, developed downslope or connected to main extensional tectonic lineaments intersecting stream beds; now tunnels drain mainly active recharge groundwater and so cause a relevant stream baseflow deplenishment (approximately two-thirds of the natural value), possibly resulting in adverse effects on local ecosystems.  相似文献   
38.
39.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   
40.
We present here some initial results from the ongoing XMM-Newton bright serendipitous survey. The survey is aimed at selecting and spectroscopically identifying a large and statistically representative sample of bright (f x ≳ 7× 10−14 c.g.s) serendipitous X-ray sources in the 0.5–4.5 keV energy band (BSS) and a complementary (smaller) sample in the 4.5–7.5 keV energy band (HBSS). The work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributors directly founded by ESA member states and the USA(NASA) and on observations collected at TNG. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. On behalf of the XMM-Newton Survey Science Center.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号