Heat waves and dry spells are analyzed (i) at eightstations in south Moravia (Czech Republic), (ii) inthe control ECHAM3 GCM run at the gridpoint closest tothe study area, and (iii) in the ECHAM3 GCM run fordoubled CO2 concentrations (scenario A) at thesame gridpoint (heat waves only). The GCM outputs arevalidated both against individual station data andareally representative values. In the control run, theheat waves are too long, appear later in the year,peak at higher temperatures and their numbers areunder- (over-) estimated in June and July (in August).The simulated dry spells are too long, and the annualcycle of their occurrence is distorted.Mid-tropospheric circulation, and heat waves and dryspells are linked much less tightly in the controlclimate than in the observed. Since mid-troposphericcirculation is simulated fairly successfully, wesuggest the hypothesis that either the air-masstransformation and local processes are too strong inthe model or the simulated advection is too weak. Inthe scenario A climate, the heat waves become a commonphenomenon: warming of 4.5 °C in summer(difference between scenario A and control climates)induces a five-fold increase in the frequency oftropical days and an immense enhancement of extremityof heat waves. The results of the study underline theneed for (i) a proper validation of the GCM outputbefore a climate impact study is conducted and (ii)translation of large-scale information from GCMs intolocal scales using downscaling and stochasticmodelling techniques in order to reduce GCMs' biases. 相似文献
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions. 相似文献
Some methods are evaluated and extended to estimate roughness length and zero plane displacement height for atmospheric flow over arrays of obstacles, typically buildings. It appears that the method proposed by Bottema, with an extension to account for low density obstacle arrays, performs best. Procedures are proposed to represent irregular obstacle arrangements by a representative regular array to which Bottema's method can be applied. It is shown that this can be done without loss of accuracy, in general, roughness length can be predicted within a factor of two in more than 74% of the cases (95% reliability estimate). The methods proposed by Lettau and Raupach have been included in the evaluation. Lettau's model, which only requires input on the frontal area density, predicts roughness length unbiassed for frontal area densities up to 0.3, but predictions will be within a factor of two in more than 59% of the cases only (95% reliability estimate). 相似文献
In the study of soil erosion, specifically on detachment of soil particles by raindrop impact, kinetic energy is a commonly suggested indicator of the raindrop's ability to detach soil particles from the soil mass. Since direct measurement of kinetic energy requires sophisticated and costly instruments, the alternative approach is to estimate it from rainfall intensity. The present study aims at establishing a relationship between rainfall intensity and kinetic energy for rainfalls in Central Cebu, Philippines as a preface of a wider regional investigation.
Drop size distributions of rainfalls were measured using the disdrometer RD-80. There are two forms of kinetic energy considered here. One is kinetic energy per unit area per unit time (KER, J m−2 h−1) and the other is kinetic energy per unit area per unit depth (KE, J m−2 mm−1). Relationships between kinetic energy per unit area per unit time (KER) and rainfall intensity (I) were obtained using linear and power relations. The exponential model and the logarithmic model were fitted to the KE–I data to obtain corresponding relationships between kinetic energy per unit area per unit depth of rainfall (KE) and rainfall intensity (I). The equation obtained from the exponential model produced smaller standard error of estimates than the logarithmic model. 相似文献
Our goal was to evaluate effects of broad-scale changes in vegetation from grasslands to shrublands over the past 150 years on near-surface atmosphere over the Jornada Experimental Range in the northern Chihuahuan Desert, using a regional climate model. Simulations were conducted using 1858 and 1998 vegetation maps, and data collected in the field. Overall, the vegetation shift led to small changes in sensible heat (SH) and an increase in latent heat (LH). The impacts of shrub encroachment depended on shrubland type: conversion from grass to mesquite cools the near-surface atmosphere and from grass to creosotebush warms it. Higher albedo of mesquite relative to grasses reduced available energy, which was dissipated mainly as LH due to the deeper root system in mesquite. In creosotebush-dominated areas, a decrease in albedo, an increase in roughness length and displacement height contributed to the SH increase and warmer temperatures. Sensitivity simulations showed that an increase in soil moisture content enhanced shrub LH and a reduction in mesquite cover enhanced the temperature differences. The observed shift in vegetation led to complex interactions between land and surface fluxes, demonstrating that vegetation itself is a weather and climate variable as it significantly influences temperature and humidity. 相似文献
Recently, the sediment stratigraphy and geochronology of the well‐known Palaeolithic site Byzovaya in northern Russia were investigated. New technological analyses of the artefacts suggest a Middle Palaeolithic Mousterian culture, and occupation by Neanderthals, not Modern humans as previously thought. We present here a new and detailed documentation of the stratigraphy, including the geological context of the artefacts and faunal remains. From sedimentological criteria we confidently interpret the find‐bearing strata as debris‐flow deposits, covered by aeolian sediments. The chronology is based on radiocarbon and luminescence (OSL) dates from the find‐bearing and overlying strata. The results are utilized to reconstruct the geological history at the excavation area. The stratigraphy varies considerably across the excavation area. The most intact and undisturbed part of the sequence was found inside the most recent Excavation II. In this part the artefacts and bones appear to have been permanently sealed and protected by aeolian sand. The older Excavation I shows a more complicated stratigraphy, as the finds may have been temporarily exposed during the early Holocene owing to ravine incision and slumping activity. The individual radiocarbon dates that were collected from different parts of the site and from various stratigraphic positions are re‐investigated in this study. By using Bayesian statistics the conclusion is that the site was occupied during a restricted period around 30.6–34.7 ka. A series of partly unpublished OSL dates of coversand from different sites demonstrates a regional aeolian signal during the Lateglacial in northern Russia, 15–14 ka. 相似文献
This article presents a framework for estimating a new topographic attribute derived from digital elevation models (DEMs) called maximum branch length (Bmax). Branch length is defined as the distance travelled along a flow path initiated at one grid cell to the confluence with the flow path passing through a second cell. Bmax is the longest branch length measured for a grid cell and its eight neighbours. The index provides a physically meaningful method for assessing the relative significance of drainage divides to the dispersion of materials and energy across a landscape, that is, it is a measure of ‘divide size’. Bmax is particularly useful for studying divide network structure, for mapping drainage divides, and in landform classification applications. Sensitivity analyses were performed to evaluate the robustness of estimates of Bmax to the algorithm used to estimate flow lengths and the prevalence of edge effects resulting from inadequate DEM extent. The findings suggest that the index is insensitive to the specific flow algorithm used but that edge effects can result in significant underestimation along major divides. Edge contamination can, however, be avoided by using an appropriately extensive DEM. 相似文献