Natural Hazards - The prediction of open stope hangingwall (HW) stability is a crucial task for underground mines. In this paper, a relatively novel technique, the random forest (RF) algorithm, is... 相似文献
The Yangla deposit is an intrusion‐related Cu deposit in the Jinshajiang tectonic belt (eastern Sanjiang region, SW China). Despite extensive studies that have been conducted on this deposit, the relationship between the granitic magma and Cu mineralization is still unclear, and hence, the genesis is debated. To answer this question, we conducted an integrated study of mineralogy, fluid inclusions (FIs), and hydrogen and oxygen (H‐O) isotopes. Three mineralization stages were identified based on the ore textures, alteration zonation, and crosscutting relationships: (i) pre‐ore prograde skarn (stage I), with the garnet and pyroxene dominated by andradite and diopside, respectively; (ii) syn‐ore retrograde alteration (stage II), which is subdivided into the early syn‐ore stage (stage IIa) marked by retrograde hydrated mineral assemblages and significant Fe‐Cu‐Mo‐Pb‐Zn sulfide mineralization, and the late syn‐ore stage (stage IIb) featured by quartz‐calcite veins; and (iii) late supergene mineralization (stage III), which is characterized by secondary azurite and malachite. These results of mineralogy, FIs, and H‐O isotopes indicate that: (i) Cu mineralization has a close temporal, spatial, and genetic relationship with skarn alteration; (ii) the ore fluids were magmatic dominated with late‐stage meteoric water incursion; and (iii) Type‐S (halite‐bearing) and Type‐V (vapor‐rich) FIs coexisted in garnet and clinopyroxene of stage I, indicating that fluid boiling might have occurred during this stage. From stage I to stage IIa, the FI type transformed from Type‐S + Type‐V + Type‐L (liquid‐rich) to Type‐V + Type‐L with the conduct of mineralization and was accompanied by the disappearance of Type‐S, and homogenization temperature and salinity also tended to decrease dramatically, which may be caused by the deposition of skarn minerals. At stage IIa, boiling of the ore fluids still continued due to the change from lithostatic to hydrostatic pressure, which triggered the precipitation of abundant quartz‐Cu‐Mo‐Fe sulfides. Furthermore, fluid mixing between a high‐temperature magmatic fluid and a low‐temperature meteoric water might cause a considerable drop in temperature and the deposition of Cu‐bearing quartz/calcite veins during stage IIb. Hence, we consider the Yangla deposit to be of a skarn type, genetically related to the Mesozoic magmatism in the Sanjiang region. 相似文献
Plenty of geomechanics tests and theories have confirmed the existence of non-coaxiality while soil is subjected to principal stress rotation. This paper investigated the influence of one particular principal stress path, which is a ‘heart-shape’ stress path that is normally induced by high-speed train loading, on the non-coaxiality of reconstituted soft clay. Hollow cylinder apparatus was employed to carry out series of undrained dynamic tests. The goals of this study were to (1) reveal the essential factors of complex cyclic loading paths that influence non-coaxiality in clayey soil and (2) quantify the influence of the factors on variation in non-coaxiality under the high-speed training loading. To analyze the non-coaxiality under high-speed train loading, (a) the pure rotation stress path was utilized as comparison for underling the different influence that ‘heart-shape’ stress path has from other conventional cyclic stress paths. (b) Two variables, dynamic stress ratio and tension–compression amplitude ratio, were introduced in analyzing the evolution of the non-coaxial angle. (c) Based on the test results, equations for describing the revolution of non-coaxiality were proposed which can help to describe the variation in non-coaxial angle under complex loadings quantitatively and understand the influence of the major factors of the stress path intensively.
Ten sub-bituminous coals were analyzed petrographically and chemically as part of a program by the Alberta Research Council to investigate the compositional properties of Alberta coals and relationship to liquefaction potential. In addition, four lignites, two from Saskatchewan and one each from Texas and North Dakota, were studied for comparative purposes. Liquefaction experiments were carried out on three of the Alberta coals and on density fractions of the two U.S. lignites. Petrographically the ten sub-bituminous coals could be divided into two populations; one with high huminite and liptinite contents (>90%) and one with substantially lower contents (70–75%). The two U.S. lignites showed huminite plus liptinite contents of less than 70% while the Saskatchewan coals were somewhat higher. Reflectance measurements on the sub-bituminous coals showed a range of 0.33 to 0.51 with a rough correlation to the ASTM rank designations of these coals. Reflectivities determined on the lignites were generally lower. Float-sink fractionation of the two U.S. lignites and two sub-bituminous coals showed enrichment of huminite and liptinite in the lighter fractions and inertinite and mineral matter in the heavier splits. Examination of the relationship between liquefaction yields and petrographic composition showed a rough positive correlation with huminite-liptinite content. Examination of liquefaction residues suggested total conversion of the liptinite, extensive conversion of huminite and possible partial conversion and reactivity of the semifusinite maceral of the inertinite group. 相似文献