首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1625篇
  免费   64篇
  国内免费   34篇
测绘学   44篇
大气科学   85篇
地球物理   340篇
地质学   998篇
海洋学   62篇
天文学   121篇
综合类   13篇
自然地理   60篇
  2023年   4篇
  2022年   41篇
  2021年   47篇
  2020年   43篇
  2019年   36篇
  2018年   117篇
  2017年   125篇
  2016年   107篇
  2015年   69篇
  2014年   101篇
  2013年   135篇
  2012年   79篇
  2011年   90篇
  2010年   61篇
  2009年   81篇
  2008年   77篇
  2007年   43篇
  2006年   48篇
  2005年   37篇
  2004年   42篇
  2003年   37篇
  2002年   29篇
  2001年   14篇
  2000年   22篇
  1999年   14篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   13篇
  1994年   13篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   10篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   11篇
  1982年   14篇
  1981年   4篇
  1978年   6篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有1723条查询结果,搜索用时 46 毫秒
971.
In this paper the reaction of the salt‐/freshwater interface due to the changes in the Dead Sea level are elaborated at in details by using the inflows into the Dead Sea, the outflows due to evaporation losses and artificial discharges, and the hydrographic registrations of the Dead Sea level. The analyses show that the interface seaward migration resulted in a groundwater discharge of around 423 Mio m3 per meter drop in the level of the Dead Sea in the period 1994–1998 and of around 525 Mio m3/m in the period 1930–1937. The additional amount of groundwater joining the Dead Sea due to the interface seaward migration was 51 Mio m3 per one square kilometer of shrinkage in the area of the Dead Sea in the period 1930–1937 and 91 Mio m3/km2 in the period 1994–1998. The riparian states of the Dead Sea are nowadays loosing 370 Mio m3/a of freshwater to the Dead Sea through the interface readjustment mechanisms as a result of their over exploitation of waters which formerly fed the Dead Sea.  相似文献   
972.
Irrigation return flow coefficients, i.e. the ratio between the quantity of water returned from the cultivated area to the groundwater system and the amount of abstraction, vary by more than 50% for rice cultivation using standing water irrigation to 0% in the case of drip irrigation technique. This component of the groundwater budget plays an important role, particularly in intensively irrigated areas. Thus, to avoid any inaccurate aquifer budgeting, modelling and consequently any erroneous watershed management, this component needs to be accurately assessed for a particular time‐step (e.g. weekly, seasonally) onto the studied area. The present paper proposes a cost‐effective and useful methodology for assessing irrigation return flow coefficients (Cf = irrigation return flow/pumping flow) based on (i) basic crops field survey and meteorological data and (ii) the use of a simple hydraulic model that combines both water balance technique and unsaturated/saturated flow theory. An attempt to estimate the uncertainty of irrigation return flow coefficient estimates based on the uncertainty introduced by the pumping and the natural spatial variability of the soil characteristics is also proposed. Results have been compared to real field conditions and allow us to (i) estimate the uncertainty and (ii) validate and demonstrate the robustness of the applied methodology. The proposed methodology allows relatively good estimates of the irrigation return flow coefficients at watershed and seasonal scale. The irrigation return flow coefficients are calculated as: 51 ± 8% in rainy season (Kharif) and 48 ± 4% in summer (Rabi) for rice; 26 ± 11% in rainy season and 24 ± 4% in summer for vegetables; 13 ± 8% in rainy season and 11 ± 3% in summer for flowers. These results were found to be consistent with the existing literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
973.
The heavy use of pesticides in agriculture has meant that the fate due to their movement after their application continue to be a real problem for the environment. In this work, a viable eco-remediation technique based on the use of natural organic substances (NOS) that characterize the Mediterranean region is proposed to demonstrate the efficiency of endosulfan sulphate removal from water. Experimental results showed that the pH of pesticide solutions and temperature negatively affect the adsorption process. According to adsorption kinetic data, 5 h were considered as the equilibrium time for realizing adsorption isotherm. The Freundlich isotherm model describes better the adsorption process of endosulfan sulphate on NOS tested. The Freundlich constant Kf depended mainly on the nature of each adsorbent and ranged from 5.56 for straw to 13.54 for date stones. The adsorption tests gave very satisfying results and point to the possible application of these supports as an ecological remediation technique to reduce pesticide contamination of aquatic ecosystems.  相似文献   
974.
975.
Stepwise hydrochemical and isotope-based methodology was adopted to identify mineralization processes, assess the impact of resources overexploitation and flood irrigation, and conceptualize groundwater hydrodynamics in the Djérid aquifer system, Tunisia. The study demonstrates that the main processes controlling groundwater geochemistry are dissolution of evaporates and phosphate-bearing rocks, cation exchange, mixing between high and low TDS end-members, and irrigation return flow. Interpretation of isotope data demonstrates that the deep aquifer was mostly recharged by late Pleistocene palaeowater, while the shallow aquifer is entirely recharged by return flow. The intermediate aquifer groundwater is actually a mixing of early to middle Holocene palaeowater, late Pleistocene deep aquifer palaeowater and return flow waters. The established conceptual model shows that deep and shallow groundwater leakages into the intermediate aquifer are enhanced by the presence of deep faults, the high hydraulic head of the deep aquifer, the overexploitation of the intermediate aquifer, and the long-term flood irrigation.  相似文献   
976.
This paper provides for the first time an experimental study where the impact of sea‐level fluctuations and inland boundary head‐level variations on freshwater–saltwater interface toe motion and transition zone dynamics was quantitatively analysed under transient conditions. The experiments were conducted in a laboratory flow tank where various (inland and coastal) head changes were imposed to the system and the response of the key seawater intrusion parameters was analysed with high spatial and temporal resolution. Two homogeneous aquifer systems of different grain size were tested. The numerical code SEAWAT was used for the validation. The results show that in cases of sea‐level variations, the intruding wedge required up to twice longer time to reach a new steady‐state condition than the receding wedge, which thereby extend the theory of timescale asymmetry between saltwater intrusion and retreat processes in scenarios involving sea‐level fluctuations. The intruding and receding rates of the saltwater wedge were respectively similar in the scenario involving sea‐level and the freshwater‐level changes, despite change in transmissivity. The results show that, during the intrusion phase, the transition zone remains relatively insensitive, regardless of where the boundary head change occurs (i.e., freshwater drop or sea‐level rise) or its magnitude. By contrast, a substantial widening of the transition zone was observed during the receding phase, with almost similar amplitude in the scenario involving a rise of the freshwater level compared with that caused by a drop of the saltwater level, provided that an equivalent absolute head change magnitude was used. This transition zone widening (occurring during saltwater retreat) was greater and extended over longer period in the low hydraulic conductivity aquifer, for both freshwater‐level rise and sea‐level drop scenarios. The concentration maps revealed that the widening mechanism was also enhanced by the presence of some freshwater sliding and into the wedge during saltwater retreat, which was thereafter sucked upward towards the interface because of density difference effects.  相似文献   
977.
Data assimilation is widely used to improve flood forecasting capability, especially through parameter inference requiring statistical information on the uncertain input parameters (upstream discharge, friction coefficient) as well as on the variability of the water level and its sensitivity with respect to the inputs. For particle filter or ensemble Kalman filter, stochastically estimating probability density function and covariance matrices from a Monte Carlo random sampling requires a large ensemble of model evaluations, limiting their use in real-time application. To tackle this issue, fast surrogate models based on polynomial chaos and Gaussian process can be used to represent the spatially distributed water level in place of solving the shallow water equations. This study investigates the use of these surrogates to estimate probability density functions and covariance matrices at a reduced computational cost and without the loss of accuracy, in the perspective of ensemble-based data assimilation. This study focuses on 1-D steady state flow simulated with MASCARET over the Garonne River (South-West France). Results show that both surrogates feature similar performance to the Monte-Carlo random sampling, but for a much smaller computational budget; a few MASCARET simulations (on the order of 10–100) are sufficient to accurately retrieve covariance matrices and probability density functions all along the river, even where the flow dynamic is more complex due to heterogeneous bathymetry. This paves the way for the design of surrogate strategies suitable for representing unsteady open-channel flows in data assimilation.  相似文献   
978.
Damage assessments after past earthquakes have frequently revealed that plan configuration irregular buildings have more severe damage due to excessive torsional responses and stress concentration than regular buildings. The plan configuration irregularities introduce major challenges in the seismic design of buildings. One such form of irregularity is the presence of re-entrant corners in the L-shaped buildings that causes stress concentration due to sudden changes in stiffness and torsional response amplification; hence causes early collapse. A constructive research into re-entrant corner and torsional irregularity problems is essentially needed greater than ever. Therefore, the focus of this study is to investigate structural seismic response demands for the class of L-shaped buildings through evaluating the plan configuration irregularity of re-entrant corners and lateral–torsion coupling effects on measured seismic response demands. The measured responses include story drift, inter-story drift, story shear force, overturning moment, torsion moment at the base and over building height, and torsional irregularity ratio. Three dimensional finite element model for nine stories symmetric buildings as reference model is developed. In addition, six L-shaped building models are formulated with gradual reduction in the plan of the reference building model. The results prove that building models with high irregularity are more vulnerable due to the stress concentration and lateral torsional coupling behavior than that with regular buildings. In addition, the related lateral shear forces in vertical resisting elements located on the periphery of the L-shaped buildings could be significantly increased in comparison with the corresponding values for a symmetric building.  相似文献   
979.
The study was performed to estimate the weekly sediment load in Thal canal located in Mianwali district Punjab, Pakistan. Past records of sediments and discharge have been considered as the input parameters. The best input combinations have been identified with the help of advanced algorithms including full, sequential and increasing embedding, genetic algorithm and hill climbing in combination with the gamma test. Model training has been carried out using two artificial neural network-based algorithms, namely Broyden–Fletcher–Goldfarb–Shanno (BFGS), back-propagation and a local linear regression technique. A variety of statistical parameters including R square, root mean squared error, mean square error and mean bias error (MBE) has been calculated in order to evaluate the best models. The results strongly suggested that BFGS-based model performed better than all other models with remarkably low values of MBE. Significantly high values of correlation coefficient (R square) in both training and testing evidenced a close similarity between actual and predicted sediment load values for the same model.  相似文献   
980.
Egypt is currently seeking additional freshwater resources to support national reclamation projects based mainly on the Nubian aquifer groundwater resources. In this study, temporal (April 2002 to June 2016) Gravity Recovery and Climate Experiment (GRACE)-derived terrestrial water storage (TWSGRACE) along with other relevant datasets was used to monitor and quantify modern recharge and depletion rates of the Nubian aquifer in Egypt (NAE) and investigate the interaction of the NAE with artificial lakes. Results indicate: (1) the NAE is receiving a total recharge of 20.27 ± 1.95 km3 during 4/2002?2/2006 and 4/2008–6/2016 periods, (2) recharge events occur only under excessive precipitation conditions over the Nubian recharge domains and/or under a significant rise in Lake Nasser levels, (3) the NAE is witnessing a groundwater depletion of ? 13.45 ± 0.82 km3/year during 3/2006–3/2008 period, (4) the observed groundwater depletion is largely related to exceptional drought conditions and/or normal baseflow recession, and (5) a conjunctive surface water and groundwater management plan needs to be adapted to develop sustainable water resources management in the NAE. Findings demonstrate the use of global monthly TWSGRACE solutions as a practical, informative, and cost-effective approach for monitoring aquifer systems across the globe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号