首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1625篇
  免费   64篇
  国内免费   34篇
测绘学   44篇
大气科学   85篇
地球物理   340篇
地质学   998篇
海洋学   62篇
天文学   121篇
综合类   13篇
自然地理   60篇
  2023年   4篇
  2022年   41篇
  2021年   47篇
  2020年   43篇
  2019年   36篇
  2018年   117篇
  2017年   125篇
  2016年   107篇
  2015年   69篇
  2014年   101篇
  2013年   135篇
  2012年   79篇
  2011年   90篇
  2010年   61篇
  2009年   81篇
  2008年   77篇
  2007年   43篇
  2006年   48篇
  2005年   37篇
  2004年   42篇
  2003年   37篇
  2002年   29篇
  2001年   14篇
  2000年   22篇
  1999年   14篇
  1998年   11篇
  1997年   11篇
  1996年   8篇
  1995年   13篇
  1994年   13篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   10篇
  1986年   15篇
  1985年   14篇
  1984年   11篇
  1983年   11篇
  1982年   14篇
  1981年   4篇
  1978年   6篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1969年   3篇
  1966年   3篇
排序方式: 共有1723条查询结果,搜索用时 15 毫秒
801.
The complex siliciclastic aquifer system underneath the Baton Rouge area, Louisiana (USA), is fluvial in origin and is characterized by strongly binary heterogeneity of sand units and mudstones as pervious and impervious hydrofacies. The east–west trending Baton Rouge fault and Denham Springs-Scotlandville fault cut across East Baton Rouge Parish and play an important role in groundwater flow and aquifer salinization. This study reconstructs the Baton Rouge aquifer-fault system architecture for a Miocene-Pliocene depth interval that consists of the 1,200-foot sand to the 2,000-foot sand. The results show the spatial extent of sand units, their interconnections, and flow paths within each sand unit. The regional-scale formation dip, the sand unit offset on the faults, and the volumetric spatial extent of individual sand units are quantified. The study reveals the complexity of the Baton Rouge aquifer-fault system where the sand deposition is non-uniform, different sand units are interconnected, the sand unit displacement on the faults is significant, and the spatial distribution of flow pathways through the faults is sporadic. The identified locations of flow pathways through the Baton Rouge fault provide useful information on possible windows for saltwater intrusion from the south.  相似文献   
802.
The hydraulic conductivity represents an important indicator parameter in the generation and redistribution of excess pore pressure of sand–silt mixture soil deposits during earthquakes. This paper aims to determine the relationship between the undrained shear strength (liquefaction resistance) and the saturated hydraulic conductivity of the sand–silt mixtures and how much they are affected by the percentage of low plastic fines (finer than 0.074 mm) and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests carried out on samples reconstituted from Chlef river sand with 0, 10, 20, 30, 40, and 50 % non-plastic silt at an effective confining pressure of 100 kPa and two initial relative densities (D r = 20, 91 %) are presented and discussed. It was found that the undrained shear strength (liquefaction resistance) can be correlated to the fines content, intergranular void ratio and saturated hydraulic conductivity. The results obtained from this study reveal that the saturated hydraulic conductivity (k sat) of the sand mixed with 50 % low plastic fines can be, in average, four orders of magnitude smaller than that of the clean sand. The results show also that the global void ratio could not be used as a pertinent parameter to explain the undrained shear strength and saturated hydraulic conductivity response of the sand–silt mixtures.  相似文献   
803.
Taphonomy and diagenesis of the ammonoid Libycoceras ismaeli (Zittel) have been approached in order to interpret the post-mortem depositional history during the Late Cretaceous of Jordan based on the comparative analysis of composition and taphonomy. The Campanian–Maastrichtian Al-Hisa Phosphorite Formation is exposed in northwestern and central Jordan is rich in cephalopods. It consists of alternating thin-bedded limestone, more or less silicified or calcified phosphorite layers, thick- and cross-bedded oyster lumachells, and lenses and layers of minable phosphate. The sphenodiscid ammonite L. ismaeli (Zittel) predominantly occurs in the middle part of this formation. L. ismaeli is associated with different nautiloid and baculitid species. The mode of occurrence of the studied ammonoids suggesting that they are best interpreted to been nektobenthic, not nektoplanktic. Taphonomic and diagenetic studies of transversely sliced specimens were carried out by means of polarizing and scanning electron microscope.  相似文献   
804.
Petrophysical characteristics of the late Miocene Wakar Formation of Port Fouad Marine Field have been evaluated through the analysis of well-logging records of nine exploratory and development wells, distributed in the northeastern offshore area of the Nile Delta. These records have been analyzed through utilizing the ELAN Plus petrophysics software in order to identify the lithological constituents and fluid saturation parameters. The gas potentialities of the studied formation have been evaluated through number of isoparameteric maps. The litho-saturation analysis indicates that the Wakar Formation in the studied wells is mainly gas-bearing with some water-bearing sand levels. The analytical formation evaluation reveals that the lithological facies consists mainly of sandstone, shale, and siltstone. The disseminated shale is mainly of dispersed type and some of laminated habitat. It also points to the dominance of the intergranular porosity. The isoparametric maps of the petrophysical parameters show that the level S1 of Wakar Formation is the main reservoir.  相似文献   
805.
Darfur region is one of the most vulnerable areas in Sudan that suffer from shortage in water supply. The objective of the current study is to utilize remote sensing techniques combined with the structural analysis to recognize the most potential fracture zones for groundwater occurrences in the hard rock terrains of Darfur region. The old ductile deformation features in Darfur region delineated from Landsat imageries are used for the structural analysis to determine and classify the fractures in the hard rock terrains of the region. Based on the structural analysis conducted in this study, Darfur region was divided into two domains—the western domain of the pre-Pan-African age that is affected by the two deformational phases (D1 and D2), and the eastern domain represented by the basement related to the Pan-African orogeny. The most potential fractures in the western domain are in the NW–SE and NE–SW trends that classified as extensional and release open fractures for the deformations D1 and D2. In the eastern domain, the main potential fractures for groundwater occurrence are in E–W and N–S directions that are classified as extensional and release open fractures of the deformation D3. From the results of the structural analysis, the main potential fracture systems in Darfur region trend are NW–SE, NE–SW, and E–W directions. The intersections of these fracture systems are the most promising targets for drilling, with consideration of the topography, the rates of recharge, and the underlying geology. The geophysical data and boreholes information in Zalingei and north of El Geneina areas in West Darfur confirm the results obtained from remote sensing data and structural analysis, in which the NW–SE, NE–SW, and E–W fractures trends are the most potential fractures in Darfur region.  相似文献   
806.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   
807.
This research examined the balneological characteristics of spring waters within the area of Abu-Jir Fault Zone throughout the hydrogeologic aspects explained by the setting of the hydrogeologic units including the water-bearing horizons of Euphrates, Ana, and Baba Formations. The groundwater flow in the hydrogeologic system correlated with the trends of enrichment or depletion case processes of mineralization (spatial distribution maps of TDS and other components) show different phenomena of groundwater source and interconnection, which helps in the classification springs into two potential site. The physicochemical characteristics of the water flow from springs indicate a hydrochemical approach throughout the spatial variation of important parameters (using Rockware software) related to the balneological study. The monitoring network of the spring waters performed by seven field measurements and 33 variables (totaling to 720 detected measurements) in 18 springs approved the after desk study and water point inventory using a GPS apparatus (GARMIN SUMMIT-e TREX). The study examined the integrated hydrogeological aspects and spring water properties for evolutions and the classification of minero-medicinal water. The traditional hydrochemical information of the spring waters and their sediment properties correlated with balneological limits (standards and definitions) are used in the selection of springs characterized by balneotherapeutic applications. A suggested screening and ranking technique has been developed for evaluating preferable springs selected for natural therapy. The application of ranking technique indicates four graded consequent preferable springs for balneotherapeutic investment: first grade spring represented by Kubaiysa spring (S-4); second grade springs represented by Tawila spring (S-12); third grade springs represented by Mamora spring (S-15), Arnab spring (S-10), Zazoe spring (S-5), and Maqtoom spring (S-13); and fourth grade springs represented by Khalidiya spring (S-16) and Layeg spring (S-7).  相似文献   
808.
809.
Ras Fanar field is one of the largest oil-bearing carbonate reservoirs in the Gulf of Suez. The field produces from the Middle Miocene Nullipore carbonate reservoir, which consists mainly of algal-rich dolomite and dolomitic limestone rocks, and range in thickness between 400 and 980 ft. All porosity types within the Nullipore rocks have been modified by diagenetic processes such as dolomitization, leaching, and cementation; hence, the difficulty arise in the accurate determination of certain petrophysical parameters, such as porosity and permeability, using logging data only. In this study, artificial neural networks (ANN) are used to estimate and predict the most important petrophysical parameters of Nullipore reservoir based on well logging data and available core plug analyses. The different petrophysical parameters are first calculated from conventional logging and measured core analyses. It is found that pore spaces are uniform all over the reservoirs (17–23%), while hydrocarbon content constitutes more than 55% and represented mainly by oil with little saturations of secondary gasses. A regular regression analysis is carried out over the calculated and measured parameters, especially porosity and permeability. Fair to good correlation (R <65%) is recognized between both types of datasets. A predictive ANN module is applied using a simple forward backpropagation technique using the information gathered from the conventional and measured analyses. The predicted petrophysical parameters are found to be much more accurate if compared with the parameters calculated from conventional logging analyses. The statistics of the predicted parameters relative to the measured data, show lower sum error (<0.17%) and higher correlation coefficient (R >80%) indicating that good matching and correlation is achieved between the measured and predicted parameters. This well-learned artificial neural network can be further applied as a predictive module in other wells in Ras Fanar field where core data are unavailable.  相似文献   
810.
This paper describes a multidisciplinary study approach (petrography and rock magnetism) conducted on samples collected from the study area to characterise the magnetic mineralogy and to determine if the magnetisation of both lithologies were induced or retain a remnant component. Petrophysical, mineralogical and geochemical analyses confirm bimodal aspects, particularly in basic rocks; the two magnetic modes depend essentially on the mineralogical and geochemical characteristics of the samples. The ultramafic rocks comprise a highly altered primary mineralogy with chromite and magnetite as magnetic phases. The second type is of mafic composition with a less altered primary mineralogy and essentially magnetite and/or (hemo-ilmenite) as a carrier of magnetic mineralisation. Sulphides are characterised by high concentrations of Cu, Zn and Pb. The mineralogy is composed mainly of pyrrhotite (85% to 90%), sphalerite, galena, chalcopyrite, arsenopyrite and, occasionally, stannite. Monocline pyrrhotite seems to be the magnetic carrier of magnetisation in both Draa Sfar and Koudiat Aïcha. However, we suspect a different amount of hexagonal pyrrhotite as the cause of different magnetic behaviour. Paleomagnetic and thermomagnetic analyses reveal different. The calculated characteristic direction of natural remnant magnetisation for sulphides was used to model the magnetic anomaly of Draa Sfar. The proposed model match the geological features concluded from geological mapping and boreholes. Results from this work can be very useful for any modelling processes of magnetic anomalies suspected due to a sulphide mineralisation in an area with poor outcrops and no presence of boreholes information or of any geological or geochemical data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号