首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   7篇
  国内免费   10篇
测绘学   2篇
大气科学   47篇
地球物理   124篇
地质学   129篇
海洋学   50篇
天文学   7篇
综合类   3篇
自然地理   14篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   6篇
  2018年   11篇
  2017年   16篇
  2016年   14篇
  2015年   11篇
  2014年   20篇
  2013年   29篇
  2012年   13篇
  2011年   19篇
  2010年   17篇
  2009年   20篇
  2008年   23篇
  2007年   10篇
  2006年   9篇
  2005年   13篇
  2004年   11篇
  2003年   14篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   9篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1974年   5篇
  1973年   4篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
51.
Seismic body-wave and surface-wave data indicate the existence of a substantial lowvelocity, low-Q zone in the upper mantle beneath western North America. Conditions in this zone are distinctively different from those that are typical of the upper mantle in shield regions. The present study, using Walsh's model for partially melted rock, suggests a common mechanism for low-velocity and low-Q zones. This parametric study also indicates that the pronounced low-velocity, low-Q zone and anomalous travel-time delays of both P and S waves in the Basin and Range Province are consistent with the combined effects of high temperature, chemical composition, phase changes, and partial melting. The observed low Pn velocity in this region is consistent with high temperature, chemical composition, and the presence of a partially molten layer within the upper mantle, but the observed teleseismic delay times result principally from the thickness of the lowvelocity zone. The teleseismic delay-time variations are therefore related to the seismic Q distribution in the asthenosphere. Conditions a few kilometers beneath the Moho boundary influence the Pn velocity; however, the observed correlation among the teleseismic signal amplitudes, travel-time delays, and the upper mantle Q indicates that the Pn velocity is a better indicator of upper mantle Q than suggested by the Pn path alone. This knowledge of the upper mantle seems to account for the anomalous effects of the Basin and Range Province and other regions of similar tectonic nature on observations of teleseismic events. This will provide a practical technique for comparing seismic observations made in unstable tectonic regions with observations made in shield areas.  相似文献   
52.
Taiwan is an active mountain belt formed by oblique collision between the Luzon arc and the Asian continent. Regardless of the ongoing collision in central and southern Taiwan, a post-collisional extension regime has developed since the Plio–Pleistocene in the northern part of this orogen, and led to generation of the Northern Taiwan Volcanic Zone. Emplaced at 0.2 Ma in the southwest of the Volcanic Zone, lavas from the Tsaolingshan volcano are highly magnesian (MgO≈15 wt.%) and potassic (K2O≈5 wt.%; K2O/Na2O≈1.6–3.0). Whereas these basic rocks (SiO2≈48 wt.%) have relatively low Al2O3≈12 wt.%, total Fe2O3≈7.5 wt.% and CaO≈7.2 wt.%, they are extremely enriched in large ion lithophile elements (LILE, e.g. Cs, Rb, Ba, Th and U). The Rb and Cs abundances, >1000 and 120 ppm, respectively, are among the highest known from terrestrial rocks. In addition, these rocks are enriched in light rare earth elements (LREE), depleted in high field strength elements (HFSE), and display a positive Pb spike in the primitive mantle-normalized variation diagram. Their REE distribution patterns mark with slight Eu negative anomalies (Eu/Eu*≈0.90–0.84), and Sr and Nd isotope ratios are uniform (87Sr/86Sr≈0.70540–0.70551; 143Nd/144Nd≈0.51268–0.51259). Olivine, the major phenocryst phase, shows high Fo contents (90.4±1.8; 1σ deviation), which are in agreement with the whole rock Mg-values (83–80). Spinel inclusions in olivine are characterized by high Cr/Cr+Al ratios (0.94–0.82) and have compositions similar to those from boninites that originate from highly refractory peridotites. Such petrochemical characteristics are comparable to the Group I ultrapotassic rocks defined by Foley et al. [Earth-Sci. Rev. 24 (1987) 81], such as orogenic lamproites from central Italy, Span and Tibet. We therefore suggest that the Tsaolingshan lavas resulted from a phlogopite-bearing harzburgitic source in the lithospheric mantle that underwent a recent metasomatism by the nearby Ryukyu subduction zone processes. The lavas exhibit unique incompatible trace element ratios, with Rb/Cs≈8, Ba/Rb≈1, Ce/Pb≈2, Th/U≈1 and Nb/U≈0.8, which are significantly lower than the continental crust values and those of most mantle-derived magmas. Nonmagmatic enrichment in the mantle source is therefore required. Based on published experimental data, two subduction-related metasomatic components, i.e., slab-released hydrous fluid and subducted sediment, are proposed, and the former is considered to be more pervasive for causing the extraordinary trace element ratios observed. Our observations lend support to the notion that dehydration from subducting slabs at convergent margins, as a continuing process through geologic time, can account for the fractionation of these elemental pairs between the Earth's crust and mantle.  相似文献   
53.
This paper first presents the force–deformation relationship of a post‐tensioned (PT) steel beam‐to‐column connection constructed with bolted web friction devices (FDs). This paper then describes the test program conducted in the National Center for Research on Earthquake Engineering, Taiwan, on four bolted FDs and four full‐scale PT beam‐to‐column moment connection subassemblies using the FDs. Tests confirm that (1) the hysteretic behavior of four bolted FDs is very stable, (2) the friction coefficient between the steel plate and the brass shim is about 0.34, (3) the proposed force–deformation relationships reasonably predict the experimental responses of the PT connections under cyclically increasing deformations up to a beam peak rotation of 0.05 rad, and (4) the decompression moments do not degrade as beam cyclic deformations increase. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
54.
Illness and mortality related to heat and worsening air quality are core public health concerns associated with climate change projections. We examined the historical relationship between age- and cause-specific mortality rates from 1980 through 2006 and heat events at the 99th percentile of humidex values in the historic period from January 1, 1970 to December 31, 2006 in the greater Seattle area (King, Pierce and Snohomish counties), Spokane County, the Tri-Cities (Benton and Franklin counties) and Yakima County; the relative risks of mortality during heat events were applied to population and climate projections for Washington State to calculate number of deaths above the baseline (1980–2006) expected during projected heat events in 2025, 2045 and 2085. Three different warming scenarios were used in the analysis. Relative risks for the greater Seattle area showed a significant dose-response relationship between heat event duration and daily mortality rates for non-traumatic deaths for persons ages 45 and above, typically peaking at four days of exposure to humidex values above the 99th percentile. The largest number of projected excess deaths in all years and scenarios for the Seattle region was found for age 65 and above. Under the middle warming scenario, this age group is expected to have 96, 148 and 266 excess deaths from all non-traumatic causes in 2025, 2045 and 2085, respectively. We also examined projected excess deaths due to ground-level ozone concentrations at mid century (2045–2054) in King and Spokane counties. Current (1997–2006) ozone measurements and mid-twenty-first century ozone projections were coupled with dose-response data from the scientific literature to produce estimates overall and cardiopulmonary mortality. Daily maximum 8-h ozone concentrations are forecasted to be 16–28% higher in the mid twenty-first century compared to the recent decade of 1997–2006. By mid-century in King County the non-traumatic mortality rate related to ozone was projected to increase from baseline (0.026 per 100,000; 95% confidence interval 0.013–0.038) to 0.033 (95% CI 0.017–0.049). For the same health outcome in Spokane County, the baseline period rate of 0.058 (95% CI 0.030–0.085) was estimated increase to 0.068 (95% CI 0.035–0.100) by mid-century. The cardiopulmonary death rate per 100,000 due to ozone was estimated to increase from 0.011 (95% CI 0.005–0.017) to 0.015 (0.007–0.022) in King County, and from 0.027 (95% CI 0.013–0.042) to 0.032 (95% CI 0.015–0.049) in Spokane County. Public health interventions aimed at protecting Washington’s population from excessive heat and increased ozone concentrations will become increasingly important for preventing deaths, especially among older adults. Furthermore, heat and air quality related illnesses that do not result in death, but are serious nevertheless, may be reduced by the same measures.  相似文献   
55.
56.
Flow resistance, ventilation, and pollutant removal for idealized two-dimensional (2D) street canyons of different building-height to street-width (aspect) ratios $AR$ are examined using the friction factor $f$ , air exchange rate (ACH), and pollutant exchange rate (PCH), respectively, calculated by large-eddy simulation (LES). The flows are basically classified into three characteristic regimes, namely isolated roughness, wake interference, and skimming flow, as functions of the aspect ratios. The LES results are validated by various experimental and numerical datasets available in the literature. The friction factor increases with decreasing aspect ratio and reaches a peak at $AR = 0.1$ in the isolated roughness regime and decreases thereafter. As with the friction factor, the ACH increases with decreasing aspect ratio in the wake interference and skimming flow regimes, signifying the improved aged air removal for a wider street canyon. The PCH exhibits a behaviour different from its ACH counterpart in the range of aspect ratios tested. Pollutants are most effectively removed from the street canyon with $AR = 0.5$ . However, a minimum of PCH is found nearby at $AR = 0.3$ , at which the pollutant removal is sharply weakened. Besides, the ACH and PCH are partitioned into the mean and turbulent components to compare their relative contributions. In line with our earlier Reynolds-averaged Navier–Stokes calculations (Liu et al., Atmos Environ 45:4763–4769, 2011), the current LES shows that the turbulent components contribute more to both ACH and PCH, consistently demonstrating the importance of atmospheric turbulence in the ventilation and pollutant removal for urban areas.  相似文献   
57.
58.
Large-scale air pollution transport (LSAPT) in the Yellow Sea region and their inflow onto the Korean Peninsula were observed through satellite images and ground measurements. LSAPT includes regional continental air-masses saturated with pollutants originating from China and subsequently landing on or passing through the Korean Peninsula. It is also possible to identify the distribution and transport patterns of LSAPT over the Yellow Sea. The ground concentrations for PM10, PM2.5 and CO measured at Cheongwon, located in the centre of south Korea, were compared with NOAA satellite images. Notably, the episodes observed of the LSAPT show a PM2.5 to PM10 ratio of 74% of the daily maximum concentrations. However, cases of duststorms were clearly distinguished by much higher PM10 concentrations and a ratio of 30% of PM2.5 to PM10 for daily maximum concentrations. For the episode on January 27, 2006, the inflow of a regionally polluted continental air-mass into the central and southwestern regions of the Korean Peninsula was observed sequentially at various ground observatories as well as by satellite. The north airflow dissipated the clouds over Mt. Halla on Jeju Island and further downwind, reducing air pollution and creating a von Kármán vortex.  相似文献   
59.
Summary  The possibility of climate change in the Korean Peninsula has been examined in view of the general increase in greenhouse gases. Analyses include changes in annual temperature and precipitation. These analyses are supplemented with our observations regarding the apparent decrease of forest areas. It was found that there was a 0.96 °C (0.42 °C per decade) increase in annual mean temperature between 1974 and 1997. The increase in large cities was 1.5 °C but only 0.58 °C at rural and marine stations. The difference in the mean temperature between large cities and rural stations was small from 1974 to 1981. However, the difference increased from 1982 to 1997. In particular, the warming appears most significant in winter. Prior to 1982, the lowest temperatures were often −18 °C in central Korea, and since then the lowest temperatures have been only −12∼−14 °C. Recently, the minimum January temperature has increased at a rate of 1.5 °C per decade. It is estimated that the increase of1 °C in annual mean temperature corresponds to about a 250 km northward shift of the subtropical zone boundary. The analysis of data from 1906 to 1997 indicates a trend of increasing annual precipitation, an increase of 182 mm during the 92-year peirod, with large year-to-year variations. More than half of the annual mean amount, 1,274 mm, occurred from June to September. Meteorological data and satellite observations suggest that changes have occurred in the characteristics of the quasi-stationary fronts that produce summer rain. In recent years scattered local heavy showers usually occur with an inactive showery front, in comparison with the classical steady rain for more than three weeks. For instance, local heavy rainfall, on 6 August 1998 was in the range of 123–481 mm. The scattered convective storms resulted in flooding with a heavy toll of approx. 500 people. The northward shift of the inactive showery front over Korea, and of a convergence zone in central China, correlate with the increase in temperature. It has been suggested that the decrease in forest areas and the change in ground cover also contribute to the warming of the Korean Peninsula. Received March 16, 2000  相似文献   
60.
Long-term variations and trends of atmospheric aerosols in the East Asian region were analyzed by using aerosol optical depth (AOD or τ), and ångström exponent (AE or α) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2010. The increased emission of anthropogenic fine aerosols in east China resulted in the high AOD in this region during summer. The steady increasing emission of anthropogenic fine aerosols caused an increasing trend of AOD in east China, and the large-scale transport of sandstorms and smoke plume caused by forest fires affected intense inter-annual variations of AOD in the East Asian region. While in the central part of South Korea, located in the lee side of the East Asian continent, AE tended to rise to a level higher than in east China, the ground-based mass concentrations continued to decline. A noticeable decrease of PM10 mass concentration in spring and winter in central Korea is most likely attributable to decreases in sandstorms in the source region of East Asia. However, the ratio of PM2.5 mass concentration to PM10 increases overall with a high level in summer. Aerosol types were classified into dust, smoke plume, and sulphate by using satellite data over Cheongwon in central Korea. The columnar AOD, with different aerosol types, was compared with the ground-based mass concentrations at Cheongwon, and the relatively high level of the correlations presented between PM2.5 and AOD produced in sulphate. Growth and increases of fine hygroscopic aerosols generated as gas-to-particle conversion particularly in summer contribute to increases of columnar AOD in the East Asian region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号