首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
测绘学   3篇
大气科学   2篇
地球物理   9篇
地质学   13篇
海洋学   1篇
天文学   9篇
自然地理   1篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1987年   1篇
排序方式: 共有38条查询结果,搜索用时 46 毫秒
11.
12.
13.
A non-stationary index-flood model was used to analyse the 1-day summer and 5-day winter precipitation maxima in the Rhine basin in an ensemble of 15 transient regional climate model (RCM) simulations. It is assumed that the seasonal precipitation maxima follow a generalized extreme value (GEV) distribution with time varying parameters. The index-flood assumption implies that the dispersion coefficient (the ratio of the scale and the location parameters) and the shape parameter are constant over predefined regions, while the location parameter varies within these regions. A comparison with the estimates from gridded observations shows that these GEV parameters are too large in the summer season, while there is a large overestimation of the location parameter and underestimation of the dispersion coefficient in winter. However, a large part of the biases in the summer season might be due to the low number of stations used for gridding the observations. Though there is considerable variation in the changes of the extreme value distributions among the RCM simulations, common tendencies can be identified. In summer, large quantiles increase as a consequence of an increase of the dispersion coefficient, while there is almost no change of low quantiles. In winter, low quantiles increase because of an increase of the location parameter. This effect is, however, counterbalanced by a decrease of the shape parameter in most RCM simulations, resulting in only a slight increase of large quantiles. Departures from the assumed index-flood model were observed in the Alpine region in the south of the basin. This is due to the strong spatial heterogeneity in the dispersion coefficient in a number of RCM simulations and a significant altitude dependence of the trend in the location parameter in winter in five RCM simulations.  相似文献   
14.
15.
This paper reports ReaxFF MD simulation results on pyrolysis of a molecular model of the algaenan Botryococcus braunii race L biopolymer, specifically, ReaxFF predictions on the pyrolysis of prototypical chemical structures involving aliphatic chain esters and aldehydes. These preliminary computational experiments are then used to analyze the thermal cracking process within algaenan race L biopolymers. The simulations indicate that the thermal decomposition of the algaenan biopolymer is initiated by the cleavage of a C–O bond in the ester group, followed by the release of carbon dioxide. We also observe a significant, strongly temperature dependent, release of ethylene. This degradation mechanism leads to products similar to those observed in pyrolysis experiments, validating this computational approach.  相似文献   
16.

Background

LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m?2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m.

Results

The results show that LiDAR pulse density of 5 pulses m?2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m?2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system.

Conclusion

LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m?2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.
  相似文献   
17.
18.
19.
In this paper, we study the behavior of a pair of co-orbital planets, both orbiting a central star on the same plane and undergoing tidal interactions. Our goal is to investigate final orbital configurations of the planets, initially involved in the 1/1 mean-motion resonance (MMR), after long-lasting tidal evolution. The study is done in the form of purely numerical simulations of the exact equations of motions accounting for gravitational and tidal forces. The results obtained show that, at least for equal mass planets, the combined effects of the resonant and tidal interactions provoke the orbital instability of the system, often resulting in collision between the planets. We first discuss the case of two hot-super-Earth planets, whose orbital dynamics can be easily understood in the frame of our semi-analytical model of the 1/1 MMR. Systems consisting of two hot-Saturn planets are also briefly discussed.  相似文献   
20.
Cryogenic vacuum distillation (CVD) is a widely used technique for extracting plant water from stems for isotopic analysis, but concerns about potential isotopic biases have emerged. Here, we leverage the Cavitron centrifugation technique to extract xylem water and compare its isotopic signature to that of CVD-extracted bulk stem water as well as source water. Conducted under field conditions in tropical northern Australia, our study spans seven tree species naturally experiencing a range of water stress levels. Our findings reveal a significant deuterium bias in CVD-extracted bulk stem water when compared to xylem water (median bias −14.9‰), whereas xylem water closely aligned with source water (median offset −1.9‰). We find substantial variations in deuterium bias among the seven tree species (bias ranging from −19.3‰ to −9.1‰), but intriguingly, CVD-induced biases were unrelated to environmental factors such as relative stem water content and predawn leaf water potential. These results imply that inter-specific differences may be driven by anatomical traits rather than tree hydraulic functioning. Additionally, our data highlight the potential to use a site-specific deuterium offset, based on the isotopic signature of local source water, for correcting CVD-induced biases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号