首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   8篇
  国内免费   1篇
测绘学   4篇
大气科学   8篇
地球物理   37篇
地质学   64篇
海洋学   19篇
天文学   63篇
自然地理   10篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   2篇
  2014年   5篇
  2013年   7篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   18篇
  2008年   12篇
  2007年   13篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   8篇
  1998年   6篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有205条查询结果,搜索用时 468 毫秒
111.
Desert rodents are occasionally exposed to long spells of drought. We aimed to examine how such dehydrating conditions affect resting metabolic rate (RMR), non-shivering thermogenesis (NST) and osmoregulatory capabilities in the desert inhabiting species Sekeetamys calurus. Dehydration was imposed by gradually increasing salinity of drinking water and by feeding the animals a high-protein diet. S. calurus responded to osmotic stress by reducing RMR, increasing NST capacity, reducing urine volume and increasing urine concentration. It is suggested that the reduction in RMR is an adaptation for conserving water, while the increase in NST capacity compensates for the reduction in RMR.  相似文献   
112.
113.
Solubility experiments were performed at 30 kbars in the system Mg2SiO4-SiO2-H2O, and at 20 and 30 kbars on omphacitic pyroxene-water mixtures. They confirm that the solubility of the forsterite component in aqueous fluids remains rather low (up to 5 wt.%), whereas the solubility of the SiO2 component from solids of appropriate SiO2-rich compositions in the system Mg2SiO4-SiO2-H2O increases with temperature up to some 75% at 1,100° C. At this temperature a simplified harzburgite consisting of forsterite and enstatite coexists with a fluid containing about 35% (MgO+SiO2). Hydrous fluids coexisting with omphacitic clinopyroxenes leach sodium silicate component from the solid leaving less jadeitic pyroxenes behind. Most interestingly, the amount of sodium leached at constant temperature increases with decreasing pressure.Comparison of the results with previous solubility studies in the system K2O-MgO-Al2O3-SiO2-H2O indicates that hydrous fluids in the mantle must be alkaline rather than silicanormative. Alkali metasomatism caused by such fluids would lead to potassium enrichment in deeper portions of the upper mantle and to sodium enrichment at shallower levels, where amphiboles become stable. This K/Na fractionation in the upper mantle may explain the generation of K-rich or of Na-rich magmas through partial melting at different depths.  相似文献   
114.
Idiomorphic crystals of roedderite occur in melt-coated cavities of xenoliths of contact-altered quartz-sillimanite and quartz-feldspar gneisses which were ejected with the tephritic lava of the Bellerberg volcano. Physical and chemical properties of three different sets of crystals agree generally with those of roedderites from meteorites, in which so far the mineral had been found exclusively. In detail, however, there are characteristic chemical differences amongst the Eifel roedderites with one set of crystals matching closely the ideal formula (Na,K)2Mg5 Si12O30, a second set containing excess alkalies according to the substitution Na+0.5 Mg2+, and a third set richer in iron having an alkali deficiency following Fe3+Fe2++Na+.The terrestrial roedderites are considered to be precipitates from highly alkaline, MgSi-rich, but Aldeficient gas phases that evolved through contact heating of the gneisses by the tephrite magma.  相似文献   
115.
In its only natural occurrence known thus far sodium phlogopite is found in a dolomite containing large porphyroblasts of albite, three other magnesium phyllosilicates, dravite-uvite tourmaline, quartz, rutile, and pyrite. Sodium phlogopites are close to the ideal formula NaMg3[AlSi3O10](OH)2, although they may possibly contain additional Li. They are invariably coated by thin rims of potassium phlogopite with octahedral and tetrahedral occupancies different from those of sodium phlogopite. These rims may have prevented the retrograde hydration of sodium phlogopite which seems to be the main reason for its general absence in natural rocks. For the low-grade metamorphic conditions undergone by the dolomite a solvus relationship is indicated between sodium and potassium phlogopite.Sodium phlogopite also coexists, at least prior to the appearance of K phlogopite, with a talc phase containing Na and Al[4] substituting for Si. This type of substitution leading from pure talc to sodium phlogopite was found to extend as far as 36 mole percent. However, the nature of this phase as a genuine solid solution or as a disordered mixed-layer between talc and sodium phlogopite could not be identified as yet. The final phyllosilicate appearing in millimeter-size porphyroblasts is an ordered 11 mixed layer between clinochlore and sodian aluminian talc representing a new mineral.Metamorphic temperatures at the supposedly low water and CO2 fugacities are estimated to have been below 400 °C.  相似文献   
116.
117.
A two-year series of directional wave measurement off the Eastern Mediterranean coast of Israel reveals an abundance of high storm waves. Some of these waves have significant height in excess of 5 meters and periods as long as 15 sec.The evolution of the storm waves is described and related to the growth and paths of the storm fronts in Mid-Mediterranean. Shorter-period waves are found to always lead the arrival of longer-period swell. This characteristic is explained by a short decay distance and/or a high migration velocity of the storm front.The scatter plot of significant wave height vs period for the recorded events of each storm describes an open-loop time sequence. The difference in period between that of the peak height event and the period of a fully arisen sea of the same height is found to be indicative of the true decay distance the waves have travelled.  相似文献   
118.
Measurement of surface water runoff from plots of two different sizes   总被引:1,自引:0,他引:1  
Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
119.
In recent decades, humans have become a very important force in the Earth system, demonstrating that emissions (gaseous, liquid, and solid) are the cause of many of our environmental issues. These emissions are responsible for major global reorganizations of the biogeochemical cycles. The oceans are now a net sink of atmospheric CO2, whereas in their preindustrial state they were a source; the trophic state of the coastal oceans is progressively moving toward increased heterotrophy; and the terrestrial realm is now vacillating between trophic states, whereas in preindustrial times it was autotrophic. In this paper, we present model calculations that underscore the role of human-induced perturbations in changing Earth's climate, specifically the role of anthropogenic nitrogen and phosphorus in controlling processes in the global carbon cycle since the year 1850 with projections to the year 2035. Our studies show that since the late 1940's emissions of nitrogen and phosphorus have been sequestered in the terrestrial living phytomass and groundwater. This nutrient-enhanced fertilization of terrestrial biota, coupled with rising atmospheric CO2 and global temperature, has induced a sink of anthropogenic CO2 that roughly balances the emission of CO2 owing to land use change. In the year 2000, for example, the model-calculated terrestrial biotic sink was 1730 Mtons C/year, while the emission of CO2 from changes in land use was 1820 Mtons C/year, a net flux of 90 Mtons C/year emitted to the atmosphere. In the global aquatic environment, enhanced terrestrial inputs of biotically reactive phosphorus (about 8.5 Mtons P/year) and inorganic nitrogen (about 54 Mtons N/year), have induced increased new production and burial of organic carbon in marine sediments, which is a small sink of anthropogenic CO2. It is predicted that the response of the global land reservoirs of C, N, and P to sustained anthropogenic perturbations will be maintained in the same direction of change over the range of projected scenarios of global population increase and temperature change for the next 35 years. The magnitude of change is significantly larger when the global temperature increase is maximum, especially with respect to the processes of remobilization of the biotically important nutrients nitrogen and phosphorus.  相似文献   
120.
We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI) was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R) in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI) and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI), resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI) reduction to U(IV), to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI):ligand and U(IV):ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA), UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI)-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV)-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号