首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   21篇
  国内免费   3篇
测绘学   3篇
大气科学   25篇
地球物理   81篇
地质学   97篇
海洋学   22篇
天文学   48篇
综合类   3篇
自然地理   28篇
  2024年   4篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   14篇
  2019年   14篇
  2018年   13篇
  2017年   14篇
  2016年   17篇
  2015年   10篇
  2014年   15篇
  2013年   15篇
  2012年   15篇
  2011年   18篇
  2010年   15篇
  2009年   25篇
  2008年   16篇
  2007年   19篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
71.
72.
Fine sediment deposition in streambeds can reduce pore water fluxes and the overall rate of hyporheic exchange, producing deleterious effects on benthic and hyporheic ecological communities. To increase understanding of the factors that control the reduction of hyporheic exchange by fine sediment deposition, we conducted experiments in a laboratory flume to observe changes in the rates of solute exchange and kaolinite clay deposition as substantial amounts of kaolinite accumulated in the streambed. Two long‐term experiments were conducted, with durations of 14 days and 29 days. Use of a laboratory flume system allowed steady stream flow conditions to be maintained throughout both experiments, and alternating injections of known quantities of kaolinite and a sodium chloride tracer were used to assess the effect of clay accumulation on hyporheic exchange directly. In the first experiment, there was no bed sediment transport and kaolinite deposition formed a highly clogged near‐surface layer that greatly reduced hyporheic exchange. Application of a fundamental model for advective hyporheic exchange indicated that the effective permeability and porosity of the streambed decreased substantially during the course of the experiment. In the second experiment, the kaolinite was prepared with different surface properties to be more mobile, and the experiment was conducted with a small degree of bed sediment transport. As a result, no distinct clogged layer developed, and the rate of hyporheic exchange was found to remain approximately constant throughout the experiment (29 days). These results indicate that increasing fine sediment loads, e.g. those that occur from changes in land use, can have substantially different impacts on hyporheic exchange and associated ecological processes depending on the stream flow conditions, the rate and frequency of bed sediment transport, and the extent of interaction of the introduced fines with bed sediments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
73.
74.
Lobate talus slopes in the Deboullie Lakes Ecological Reserve (DLER) of northern Maine exhibit parabolic profiles characteristic of inactive and relict talus‐derived rock glaciers. Vegetated rock glacier surfaces suggest that the landforms are no longer active, and lobes comprising two DLER rock glaciers document periods of past growth. Observations of perennial subsurface ice are supported by datalogger temperature measurements, indicating that sporadic permafrost exists throughout the DLER. We compare the DLER rock glaciers, along with similar features elsewhere in New England and adjacent Québec, to the modern alpine permafrost distribution. Results indicate that a mean annual temperature cooling of ~6°C is required to promote active rock glacier growth. Ages of plant remains recovered from the basal sediments of a local pond constrain deglaciation to before 11 320 14C a BP, and core stratigraphy and organic content reveal that a periglacial environment persisted during the early postglacial era. Thus, we hypothesise that the DLER rock glaciers were active during Lateglacial time despite the lack of glacier activity in the region. We take this to suggest that north‐eastern US rock glaciers formed in response to mean annual temperatures skewed towards the frigid winters of the Younger Dryas chronozone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
75.
This paper briefly presents the West African Monsoon (WAM) Modeling and Evaluation Project (WAMME) and evaluates WAMME general circulation models’ (GCM) performances in simulating variability of WAM precipitation, surface temperature, and major circulation features at seasonal and intraseasonal scales in the first WAMME experiment. The analyses indicate that models with specified sea surface temperature generally have reasonable simulations of the pattern of spatial distribution of WAM seasonal mean precipitation and surface temperature as well as the averaged zonal wind in latitude-height cross-section and low level circulation. But there are large differences among models in simulating spatial correlation, intensity, and variance of precipitation compared with observations. Furthermore, the majority of models fail to produce proper intensities of the African Easterly Jet (AEJ) and the tropical easterly jet. AMMA Land Surface Model Intercomparison Project (ALMIP) data are used to analyze the association between simulated surface processes and the WAM and to investigate the WAM mechanism. It has been identified that the spatial distributions of surface sensible heat flux, surface temperature, and moisture convergence are closely associated with the simulated spatial distribution of precipitation; while surface latent heat flux is closely associated with the AEJ and contributes to divergence in AEJ simulation. Common empirical orthogonal functions (CEOF) analysis is applied to characterize the WAM precipitation evolution and has identified a major WAM precipitation mode and two temperature modes (Sahara mode and Sahel mode). Results indicate that the WAMME models produce reasonable temporal evolutions of major CEOF modes but have deficiencies/uncertainties in producing variances explained by major modes. Furthermore, the CEOF analysis shows that WAM precipitation evolution is closely related to the enhanced Sahara mode and the weakened Sahel mode, supporting the evidence revealed in the analysis using ALMIP data. An analysis of variability of CEOF modes suggests that the Sahara mode leads the WAM evolution, and divergence in simulating this mode contributes to discrepancies in the precipitation simulation.  相似文献   
76.
A single stem section (pluricolumnal) belonging to a post-Palaeozoic crinoid (sea lily) is reported from a small outcrop of Lower Jurassic Lias Group strata exposed in low cliff near Dunrobin Castle. This is the first Jurassic crinoid recorded from Eastern Scotland and the small fragment has enough diagnostic characters to be assigned to the species Isocrinus cf. robustus; a crinoid found commonly in the Lower Jurassic of England. The Scottish form collected has unusual morphology that is atypical of the genus.  相似文献   
77.
A carbonaceous chondrite was recovered immediately after the fall near the village of Diepenveen in the Netherlands on October 27, 1873, but came to light only in 2012. Analysis of sodium and poly‐aromatic hydrocarbon content suggests little contamination from handling. Diepenveen is a regolith breccia with an overall petrology consistent with a CM classification. Unlike most other CM chondrites, the bulk oxygen isotopes are extremely 16O rich, apparently dominated by the signature of anhydrous minerals, distributed on a steep slope pointing to the domain of intrinsic CM water. A small subset plots closer to the normal CM regime, on a parallel line 2 ‰ lower in δ17O. Different lithologies in Diepenveen experienced varying levels of aqueous alteration processing, being less aqueously altered at places rather than more heated. The presence of an agglutinate grain and the properties of methanol‐soluble organic compounds point to active impact processing of some of the clasts. Diepenveen belongs to a CM clan with ~5 Ma CRE age, longer than most other CM chondrites, and has a relatively young K‐Ar resetting age of ~1.5 Ga. As a CM chondrite, Diepenveen may be representative of samples soon to be returned from the surface of asteroid (162173) Ryugu by the Hayabusa2 spacecraft.  相似文献   
78.
We explore the initial conditions for fragments in the extended regions of gravitationally unstable disks. We combine analytic estimates for the fragmentation of spiral arms with 3D SPH simulations to show that initial fragment masses are in the gas giant regime. These initial fragments will have substantial angular momentum, and should form disks with radii of a few AU. We show that clumps will survive for multiple orbits before they undergo a second, rapid collapse due to H2 dissociation and that it is possible to destroy bound clumps by transporting them into the inner disk. The consequences of disrupted clumps for planet formation, dust processing, and disk evolution are discussed. We argue that it is possible to produce Earth-mass cores in the outer disk during the earliest phases of disk evolution.  相似文献   
79.

Background

Although uniquely capable of measuring multiple redox constituents nearly simultaneously with no or minimal sample pretreatment, voltammetry is currently underutilized in characterizing redox conditions in aquatic and terrestrial systems. Investigation of undisturbed media such as pore water requires a solid-state electrode, and such electrodes can be difficult to fabricate reproducibly. An approach to determine the concentrations of electroactive constituents using indirectly calibrated electrodes has been developed, but the protocol for and accuracy of this approach??the pilot ion method??has not been documented in detail.

Results

A detailed procedure for testing electrode quality is provided, and the application and limitations of the pilot ion method have been documented. To quantify Fe(II) and Mn(II), subtraction of non-linear baseline functions from voltammetric signals produced better calibration curves than did linear baselines, enabled lower detection limits and reliable deconvolution of overlapping signals, and was successfully applied to sediment pore water signals. We observed that electrode sensitivities often vary by tens of percent, and that the sensitivity declines over time. The ratio of calibration slopes of Mn(II) to Fe(II) varied by no more than 11% from one Hg/Au electrode to another and Fe(II) concentrations predicted by the Mn(II) pilot ion were, on average, 13% different from their actual values. However, concentration predictions by the pilot ion method were worse for less than 15???M Fe(II) (46% different on average). The ratio of calibration slopes of Mn(II) to S(?II) varied by almost 20% from one Hg/Au electrode to another, and S(?II) predicted concentrations were as much as 58% different from their actual values. These predictions of Fe(II) and S(?II) concentrations indicate that the accuracy of the pilot ion method depends on how independent calibration slope ratios are from the electrode used. At medium-to-high concentration for the ocean, naturally derived dissolved organic carbon did not significantly affect the baseline-corrected electrode response of Mn(II) and Fe(II), but did significantly affect the response of S(?II).

Conclusions

Despite their intrinsic variability, Hg/Au electrodes fabricated by hand can be used to quantify O2, S(?II), Fe(II), and Mn(II) without calibrating every electrode for every constituent of interest. The pilot ion method can achieve accuracies to within 20% or less, provided that the underlying principle??the independence of slope ratios??is demonstrated for all voltammetric techniques used, and effects of the physicochemical properties of the system on voltammetric signals are addressed through baseline subtraction.  相似文献   
80.
The protection of the globally widespread lentic small water bodies (LSWB) must be based on detailed knowledge about their hydrological connectivity and water balance. The study aimed to identify and quantify water balance components as well as surface-groundwater interaction of two LSWB in a characteristic lowland region with a combination of different methods. This includes the collection of hydrological data and the use of bromide and water stable isotopes (δ2H and δ18O) as tracers. With their help, mixing models were established, and daily water balances were assessed. The results show a strong bidirectional interaction of both LSWB systems with shallow groundwater. Bromide and stable isotope tracers allowed for the identification of the most relevant in- and outflow sources and pathways. Thereby, isotope data revealed isotopic enrichment typical for open-water bodies and only minor precipitation inputs mainly relevant at the end of the dry season. Water balance calculations suggested accentuated seasonal dynamics that were strongly influenced by shallow groundwater, which represented large inputs into both LSWB. By that, different phases could be identified, with high inflow rates in winter and spring and decreasing fluxes in summer. In one LSWB, a drainage system was found to have a major impact next to the shallow groundwater interaction. The findings of this research provide detailed insights into the influence and importance of shallow groundwater for LSWB in lowland regions. This impacts the diffuse input of agricultural pollutants into these ecologically important landscape features.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号