首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   32篇
  国内免费   6篇
测绘学   11篇
大气科学   9篇
地球物理   135篇
地质学   68篇
海洋学   25篇
天文学   33篇
综合类   1篇
自然地理   38篇
  2024年   2篇
  2022年   1篇
  2021年   8篇
  2020年   11篇
  2019年   15篇
  2018年   11篇
  2017年   13篇
  2016年   22篇
  2015年   8篇
  2014年   13篇
  2013年   22篇
  2012年   9篇
  2011年   24篇
  2010年   11篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有320条查询结果,搜索用时 62 毫秒
81.
Reach-scale morphological channel classifications are underpinned by the theory that each channel type is related to an assemblage of reach- and catchment-scale hydrologic, topographic, and sediment supply drivers. However, the relative importance of each driver on reach morphology is unclear, as is the possibility that different driver assemblages yield the same reach morphology. Reach-scale classifications have never needed to be predicated on hydrology, yet hydrology controls discharge and thus sediment transport capacity. The scientific question is: do two or more regions with quantifiable differences in hydrologic setting end up with different reach-scale channel types, or do channel types transcend hydrologic setting because hydrologic setting is not a dominant control at the reach scale? This study answered this question by isolating hydrologic metrics as potential dominant controls of channel type. Three steps were applied in a large test basin with diverse hydrologic settings (Sacramento River, California) to: (1) create a reach-scale channel classification based on local site surveys, (2) categorize sites by flood magnitude, dimensionless flood magnitude, and annual hydrologic regime type, and (3) statistically analyze two hydrogeomorphic linkages. Statistical tests assessed the spatial distribution of channel types and the dependence of channel type morphological attributes by hydrologic setting. Results yielded 10 channel types. Nearly all types existed across all hydrologic settings, which is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic geometry relationships were statistically significant. In addition, cobble-dominated uniform streams showed a consistent inverse relationship between slope and dimensionless flood magnitude, an indication of dynamic equilibrium between transport capacity and sediment supply. However, most morphological attributes showed no sorting by hydrologic setting. This study suggests that median hydraulic geometry relations persist across basins and within channel types, but hydrologic influence on geomorphic variability is likely due to local influences rather than catchment-scale drivers. © 2020 John Wiley & Sons, Ltd.  相似文献   
82.
Present study shows suspended sediment dynamics in the meltwater of Chhota Shigri glacier, Himachal Pradesh, India for different melt seasons during the period 2011-2014. Maximum suspended sediment concentration in the meltwater was found during the month of July 2011, 2012 and 2014 constituting to 55.2%, 48.3% and 46.9%, respectively. Whereas in 2013, maximum suspended sediment concentration was observed in August accounting for 46.1% of the total. On the other hand, maximum suspended sediment load was monitored in the month of July 2011, 2012 and 2014 constituting 59.5%, 63% and 55.7% of the total, respectively. Whereas in 2013, maximum suspended sediment load was observed in the month of August accounting for 49.8% of the total suspended sediment load. Annual distribution of suspended sediment concentration (SSC) and suspended sediment load (SSL) in the Chhota Shigri glacier shows higher value of SSC and SSL during the study period 2012 and 2013, which may be due to the presence of high glacial runoff and negative mass balance of the studied area during these time periods. Marked diurnal variation has been observed in the SSC of meltwater. Strong correlation was observed between SSC and SSL with discharge. On the other hand, SSC and SSL also showed strong exponential correlation with air temperature of the studied area. Sediment yield from the catchment of Chhota Shigri glacier is high during the peak melt season (July and August) and low during the late melt season (September and October). The average value of erosion rate for Chhota Shigri glacier basin during the study period 2011-2014 was calculated to be 1.1 mm/yr, which is lower than the average erosion rate of other Himalayan glaciers such as Rakiot, Chorabari and Gangotri glaciers, which may be caused by its geological setting containing high erosion resistant rocks such as granite, granite gneiss and porphyritic granite.  相似文献   
83.
84.
85.
Wilson  Matthew  Lane  Sandi  Mohan  Raghuveer  Sugg  Margaret 《Natural Hazards》2020,100(3):1013-1036
Natural Hazards - As the frequency of natural disasters increases, there has been an emphasis on vulnerability index creation studies. In this study, we test the validity of vulnerability indices...  相似文献   
86.
This study compares intracellular Cd content (Cd:C) of cultured marine phytoplankton grown under various Fe levels, with estimated particulate Cd:P ratios derived from regression slopes of Cd versus PO43− relationships from a global dataset. A 66-fold difference in Cd:C ratios was observed among the seven species grown under identical Fe concentrations, with oceanic diatoms having the highest Cd quotas and prymesiophytes the lowest. Interestingly, all species significantly increased their Cd:C ratios under Fe-limitation (on average 2-fold). The global data set also showed that the mean estimated Cd:P ratio of surface water particulates in HNLC (high nutrient low chlorophyll) regions were approximately 2-fold higher than non-HNLC regions. A sequence of events are proposed to explain high Cd:P ratios in HNLC waters. First, the seasonal relief from Fe-limitation in HNLC regions leads to blooms of large chain forming diatoms with high intrinsic Cd:P ratios. These large blooms may, in theory, deplete surface water CO2 and Zn concentrations, which ultimately, would result in increased Cd uptake. Eventually these blooms will run out of Fe, which has been shown to further increase intercellular Cd via growth biodilution and increased Cd uptake through non-specific Fe(II) transporters. Ultimately, Fe-limited diatoms with enhanced Cd quotas will sink out of surface waters leading to pronounced regional differences in Cd:P ratios between HNLC and non-HNLC waters in the global ocean.  相似文献   
87.
88.
A first order analytical approximation of the tesseral harmonic resonance perturbations of the Keplerian elements is presented, and the mean elements (the Keplerian elements with the long period portions averaged out) will also be given in closed form. Finally the results of a numerical test, which compares the analytical solution against a numerical integration of the Lagrange equations of motion, will be summarized.This work was sponsored with the support of the Department of the Air Force under contract F19628-85-C-0002.The views expressed are those of the author and do not reflect the official policy or position of the U.S. Government.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号