首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112965篇
  免费   1843篇
  国内免费   763篇
测绘学   2603篇
大气科学   7480篇
地球物理   22133篇
地质学   40364篇
海洋学   10147篇
天文学   26210篇
综合类   294篇
自然地理   6340篇
  2022年   722篇
  2021年   1220篇
  2020年   1332篇
  2019年   1454篇
  2018年   3078篇
  2017年   2838篇
  2016年   3354篇
  2015年   1766篇
  2014年   3278篇
  2013年   5897篇
  2012年   3572篇
  2011年   4701篇
  2010年   4224篇
  2009年   5468篇
  2008年   4735篇
  2007年   4850篇
  2006年   4489篇
  2005年   3291篇
  2004年   3227篇
  2003年   3032篇
  2002年   3001篇
  2001年   2596篇
  2000年   2532篇
  1999年   2055篇
  1998年   2147篇
  1997年   1986篇
  1996年   1724篇
  1995年   1723篇
  1994年   1479篇
  1993年   1378篇
  1992年   1290篇
  1991年   1328篇
  1990年   1338篇
  1989年   1185篇
  1988年   1088篇
  1987年   1294篇
  1986年   1119篇
  1985年   1401篇
  1984年   1592篇
  1983年   1522篇
  1982年   1382篇
  1981年   1340篇
  1980年   1181篇
  1979年   1103篇
  1978年   1086篇
  1977年   956篇
  1976年   955篇
  1975年   935篇
  1974年   897篇
  1973年   993篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
81.
82.
Stress wave attenuation across fractured rock masses is a great concern of underground structure safety. When the wave amplitude is large, fractures experience nonlinear deformation during the wave propagation. This paper presents a study on normal transmission of P‐wave across parallel fractures with nonlinear deformational behaviour (static Barton–Bandis model). The results show that the magnitude of transmission coefficient is a function of incident wave amplitude, nondimensional fracture spacing and number of fractures. Two important indices of nondimensional fracture spacing are identified, and they divide the area of nondimensional fracture spacing into three parts (individual fracture area, transition area and small spacing area). In the different areas, the magnitude of transmission coefficient has different trends with nondimensional fracture spacing and number of fractures. In addition, the study reveals that under some circumstances, the magnitude of transmission coefficient increases with increasing number of fractures, and is larger than 1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
83.
Abstract— Martian meteorites (MMs) have been launched from an estimated 5–9 sites on Mars within the last 20 Myr. Some 80–89% of these launch sites sampled igneous rock formations from only the last 29% of Martian time. We hypothesize that this imbalance arises not merely from poor statistics, but because the launch processes are dominated by two main phenomena: first, much of the older Martian surface is inefficient in launching rocks during impacts, and second, the volumetrically enormous reservoir of original cumulate crust enhances launch probability for 4.5 Gyr old rocks. There are four lines of evidence for the first point, not all of equal strength. First, impact theory implies that MM launch is favored by surface exposures of near‐surface coherent rock (≤102 m deep), whereas Noachian surfaces generally should have ≥102 m of loose or weakly cemented regolith with high ice content, reducing efficiency of rock launch. Second, similarly, both Mars Exploration Rovers found sedimentary strata, 1–2 orders of magnitude weaker than Martian igneous rocks, favoring low launch efficiency among some fluvial‐derived Hesperian and Noachian rocks. Even if launched, such rocks may be unrecognized as meteorites on Earth. Third, statistics of MM formation age versus cosmic‐ray exposure (CRE) age weakly suggest that older surfaces may need larger, deeper craters to launch rocks. Fourth, in direct confirmation, one of us (N. G. B.) has found that older surfaces need larger craters to produce secondary impact crater fields (cf. Barlow and Block 2004). In a survey of 200 craters, the smallest Noachian, Hesperian, and Amazonian craters with prominent fields of secondaries have diameters of ?45 km, ?19 km, and ?10 km, respectively. Because 40% of Mars is Noachian, and 74% is either Noachian or Hesperian, the subsurface geologic characteristics of the older areas probably affect statistics of recognized MMs and production rates of secondary crater populations, and the MM and secondary crater statistics may give us clues to those properties.  相似文献   
84.
I briefly present the Organizing Committee's and my own motivation for organizing this workshop, and I suggest a few key questions for which we will try to find possible answers in the coming days. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
85.
86.
87.
88.
89.
High resolution echelle spectroscopic observations taken with the FEROS spectrograph at the 2.2 m telescope ESO confirm the binary nature of the flare M3.5V star LU Vel (GJ 375, RE J0958-462) previously reported by Christian and Mathioudakis (2002). Emission of similar intensity from both components is detected in the Balmer, Na i D1&D2, He i D3, Ca ii H&K, and Ca ii IRT lines. We have determined precise radial velocities by cross correlation with radial velocity standard stars, which have allowed us to obtain for the first time the orbital solution of the system. The binary consists of two near-equal M3.5V components with an orbital period shorter than 2 days. We have analyzed the behaviour of the chromospheric activity indicators (variability and possible flares). In addition, we have determined its rotational velocity and kinematics.  相似文献   
90.
Surface morphology and related issues for nuclei of three comets: Halley, Borrelly and Wild 2, are considered in the paper. Joint consideration of publications and results of our analysis of the comets’ images led to conclusions, partly new, partly repeating conclusions published by other researchers. It was found that typical for all three nuclei is the presence of rather flat areas: floors of craters and other depressions, mesas and terraces. This implies that flattening surfaces or planation is a process typical for the comet nuclei. Planation seems to work through the sublimation-driven slope collapse and retreat. This requires effective sublimation so this process should work only when a comet is close to the Sun and if on the nucleus there are starting slopes, steep and high enough to support the “long-distance” avalanching of the collapsing material. If the surface had no starting slopes, then instead of planation, the formation of pitted-and-hilly surfaces should occur. An example of this could be the mottled terrain of the Borelly nucleus. Both ways of the sublimational evolution on the nucleus surface should lead to accumulation of cometary regolith. The thickness of the degassed regolith is not known, but it is obvious that in surface depressions, including the flat-floor ones, it should be larger compared with nondepression areas. This may have implications for the in situ study of comets by the Deep Impact and Rosetta missions.Our morphological analysis puts constraints on the applicability of the popular “rubble-pile comet nucleus” hypothesis (Weissman, 1986. Are cometery nuclei primordial rubble piles? Nature 320, 242-244.). We believe that the rubble pile hypothesis can be applicable to the blocky Halley nucleus. The Borelly and Wild 2 nuclei also could be rubble piles. But in these cases the “rubbles” have to be either smaller than 30-50 m (a requirement to keep lineament geometry close to ideal), or larger than 1-2 km (a requirement to form the rather extended smooth, flat surfaces of mesa tops and crater floors). Another option is that the Borelly and Wild 2 nuclei are not rubble piles.In relation to surface morphology we suggest that three end-member types of the comet nuclei may exist: (1) impact cratered “pristine” bodies, (2) non-cratered fragments of catastrophic disruption, and (3) highly Sun-ablated bodies. In this threefold classification, the Wild 2 nucleus is partially ablated primarily cratered body. Borrelly is significantly ablated and could be either primarily cratered or not-cratered fragment. Halley is certainly partially ablated but with the available images it is difficult to say if remnants of impact craters do exist on it.Recently published observations and early results of analysis of the Tempel 1 nucleus images taken by Deep Impact mission are in agreement with our conclusions on the processes responsible for the Halley, Borrelly and Wild 2 nuclei morphologies. In particular, we have now more grounds to suggest that decrease in crater numbers and increase of the role of smooth flat surfaces in the sequence Wild 2?Tempel 1?Borelli reflects a progress in the sublimational degradation of the nucleus surface during comet passages close to the Sun.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号