首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133376篇
  免费   2479篇
  国内免费   1121篇
测绘学   3164篇
大气科学   9162篇
地球物理   26744篇
地质学   47954篇
海洋学   11957篇
天文学   29787篇
综合类   451篇
自然地理   7757篇
  2022年   825篇
  2021年   1455篇
  2020年   1581篇
  2019年   1693篇
  2018年   3638篇
  2017年   3399篇
  2016年   4186篇
  2015年   2305篇
  2014年   4062篇
  2013年   7139篇
  2012年   4347篇
  2011年   5678篇
  2010年   5060篇
  2009年   6453篇
  2008年   5791篇
  2007年   5723篇
  2006年   5284篇
  2005年   4033篇
  2004年   3899篇
  2003年   3665篇
  2002年   3493篇
  2001年   3166篇
  2000年   3051篇
  1999年   2469篇
  1998年   2598篇
  1997年   2387篇
  1996年   2073篇
  1995年   2059篇
  1994年   1761篇
  1993年   1647篇
  1992年   1550篇
  1991年   1499篇
  1990年   1581篇
  1989年   1381篇
  1988年   1247篇
  1987年   1507篇
  1986年   1296篇
  1985年   1596篇
  1984年   1788篇
  1983年   1725篇
  1982年   1609篇
  1981年   1444篇
  1980年   1327篇
  1979年   1266篇
  1978年   1227篇
  1977年   1082篇
  1976年   1050篇
  1975年   1007篇
  1974年   1006篇
  1973年   1056篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
901.
The Gulf of Mexico basin occupies a vast region encompassing the southern continental margin of North America, a considerable part of the Greater Antilles, and the intervening Sigsbee Deep with the oceanic crust. In the north, the basin is contiguous with spurs of the Hercynian Appalachians, the Mississippi Interior and Permian basins. The Mississippi Fan, one of the largest in the world, governs the bottom topography and structure in the eastern Gulf of Mexico. The abyssal basin is surrounded in many areas by steep continental slopes passing in places into escarpments: Sigsbee, Campeche, and others. It is only in the Yucatan Peninsula region that the continental slope merges with a wide shelf. The Cuban-North Haiti meganticlinorium frames the basin on the Cuba Island side.  相似文献   
902.
The Granny Smith (37 t Au production) and Wallaby deposits (38 t out of a 180 t Au resource) are located northeast of Kalgoorlie, in 2.7 Ga greenstones of the Eastern Goldfields Province, the youngest orogenic belt of the Yilgarn craton, Western Australia. At Granny Smith, a zoned monzodiorite–granodiorite stock, dated by a concordant titanite–zircon U–Pb age of 2,665 ± 3 Ma, cuts across east-dipping thrust faults. The stock is fractured but not displaced and sets a minimum age for large-scale (1 km) thrust faulting (D2), regional folding (D1), and dynamothermal metamorphism in the mining district. The local gold–pyrite mineralization, controlled by fractured fault zones, is younger than 2,665 ± 3 Ma. In augite–hornblende monzodiorite, alteration progressed from a hematite-stained alkali feldspar–quartz–calcite assemblage and quartz–molybdenite–pyrite veins to a late reduced sericite–dolomite–albite assemblage. Gold-related monazite and xenotime define a U–Pb age of 2,660 ± 5 Ma, and molybdenite from veins a Re–Os isochron age of 2,661 ± 6 Ma, indicating that mineralization took place shortly after the emplacement of the main stock, perhaps coincident with the intrusion of late alkali granite dikes. At Wallaby, a NE-trending swarm of porphyry dikes comprising augite monzonite, monzodiorite, and minor kersantite intrudes folded and thrust-faulted molasse. The conglomerate and the dikes are overprinted by barren (<0.01 g/t Au) anhydrite-bearing epidote–actinolite–calcite skarn, forming a 600-m-wide and >1,600-m-long replacement pipe, which is intruded by a younger ring dike of syenite porphyry pervasively altered to muscovite + calcite + pyrite. Skarn and syenite are cut by pink biotite–calcite veins, containing magnetite + pyrite and subeconomic gold–silver mineralization (Au/Ag = 0.2). The veins are associated with red biotite–sericite–calcite–albite alteration in adjacent monzonite dikes. Structural relations and the concordant titanite U–Pb age of the skarn constrain intrusion-related mineralization to 2,662 ± 3 Ma. The main-stage gold–pyrite ore (Au/Ag >10) forms hematite-stained sericite–dolomite–albite lodes in stacked D2 reverse faults, which offset skarn, syenite, and the biotite–calcite veins by up to 25 m. The molybdenite Re–Os age (2,661 ± 10 Ma) of the ore suggests a genetic link to intrusive activity but is in apparent conflict with a monazite–xenotime U–Pb age (2,651 ± 6 Ma), which differs from that of the skarn at the 95% confidence level. The time relationships at both gold deposits are inconsistent with orogenic models invoking a principal role for metamorphic fluids released during the main phase of compression in the fold belt. Instead, mineralization is related in space and time to late-orogenic, magnetite-series, high-Mg monzodiorite–syenite intrusions of mantle origin, characterized by Mg/(Mg + FeTOTAL) = 0.31–0.57, high Cr (34–96 ppm), Ni (22–63 ppm), Ba (1,056–2,321 ppm), Sr (1,268–2,457 ppm), Th (15–36 ppm), and rare earth elements (total REE: 343–523 ppm). At Wallaby, shared Ca–K–CO2 metasomatism and Th-REE enrichment (in allanite) link Au–Ag mineralization in biotite–calcite veins to the formation of the giant epidote skarn, implicating a Th + REE-rich syenite pluton at depth as the source of the oxidized hydrothermal fluid. At Granny Smith, lead isotope data and the Rb–Th–U signature of early hematite-bearing wall-rock alteration point to fluid released by the source pluton of the differentiated alkali granite dikes.  相似文献   
903.
It is shown that glauconite-bearing interbeds are widespread in the layer-by-layer studied sections on the Sea of Okhotsk coast (Mainach section) and Kheisliveem River valley (Kavran section), the volcanoterrigenous rocks of the Kovachin, Amanin, and Gakkhin formations of the Paleogene in western Kamchatka (Upper Eocene-Lower Oligocene boundary beds). Detailed mineralogical and structural-crystallochemical characteristics of glauconite from the Amanin Formation are presented. It is suggested that such glauconite should not be used for geochronological purposes.Some specific features of glauconite formation, particularly, the preservation of specific morphological forms at high accumulation rates of volcano-terrigenous rocks, are discussed. Possibility of the formation of glauconite with the active influence of bacterial metabolism is considered.  相似文献   
904.
The Neogene Volcanic Province (NVP) within the Betic Cordillera (SE Spain) consists of three main metapelitic enclave suites (from SW to NE: El Hoyazo, Mazarrón and Mar Menor). Since the NVP represents a singular place in the world where crustal enclaves were immediately quenched after melting, their microstructures provide a “photograph” of the conditions at depth just after the moment of the melting.

The thermobarometric information provided by the different microstructural assemblages has been integrated with the geophysical and geodynamical published data into a model of the petrologic evolution of the Mar Menor enclaves. They were equilibrated at 2–3 kbar, 850–900 °C, and followed a sequence of heating melt producing reactions. A local cooling event evidenced by minor melt crystallization preceded the eruption.

The lower crustal studies presented in this work contribute to the knowledge of: (i) the partial melting event beneath the Mar Menor volcanic suite through a petrologic detailed study of the enclaves; (ii) how the microstructures of fast cooled anatectic rocks play an important role in tracing the magma evolution in a chamber up to the eruption, and how they can be used as pseudothermobarometers; (iii) the past and current evolution of the Alborán Domain (Betic Cordillera) and Mediterranean Sea, and how the base of a metapelitic crust has melted within an active geodynamic setting.  相似文献   

905.
The Eucla Basin including the vast Nullarbor Plain lies on the margins of the Yilgarn, Musgrave and Gawler cratons in southern Australia and owes its distinctive landscape to a unique set of interactions between eustatic, climatic and tectonic processes over the last ~ 50 Ma. Understanding of the history of the basin and the palaeovalleys that drained from the surrounding cratons are important because they contain major mineral deposits, and the sediments derived from them contain remobilised gold, uranium, and heavy minerals. In particular, a remarkably preserved palaeoshoreline sequence along the north-eastern margin of the Eucla Basin is highly prospective for heavy mineral placer deposits. The record of marine, marginal marine, estuarine, fluvial and lacustrine environments, as constrained mainly by an extensive borehole dataset, reflects major depositional events during the Palaeocene–Early Eocene, Middle–Late Eocene, Oligocene–Early Miocene, Middle Miocene–Early Pliocene and Pliocene–Quaternary. These events reflect the key role of eustatic sea-level variation which, during highstands, inundated the craton margins, flooding palaeovalleys to up to 400 km inboard of the present coastline. However, a systematic eastward migration of the depocentre across the Eucla Basin during the Neogene, together with apparent flow reversals in a number of palaeovalley systems draining the Gawler Craton, suggest that the Eucla Basin has also been subject to differential vertical movements, expressed as a west-side up, east-side down tilting of ~ 100–200 m. This differential movement forms part of a broader north-down–southwest-up dynamic topographic tilting of the Australian continent associated with relatively fast (6–7 cm/yr) northward plate motion since fast spreading commenced in the Southern Ocean at ~ 43 Ma. We suggest that the evolving dynamic topography field has played a key role in facilitating development of placer deposits, largely through multistage, eastward reworking of near-shore sequences during highstand transgressive cycles on a progressively tilting platform under the influence of persistent westerly weather systems.  相似文献   
906.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

907.
A relict mound of Holocene barite (BaSO4) tufa underlies the Flybye Springs, a small, barium‐rich, cold sulphur spring system in the Northwest Territories of Canada. The tufa is composed of relatively pure barite with ≤0·34 wt% Ca2+ and ≤0·77 wt% Sr2+. The mound is made up of coated bubble, raft, undulatory sheet, stromatolitic, coated grain and detrital conglomerate barite tufa. Although previously unreported in barite, these lithotypes are akin to facies found in many carbonate spring deposits. Raft and ooid‐coated grain tufa was formed via ‘inorganic’ barite precipitation in spring water ponds and tributaries where rapid oxidation of sulphide to sulphate established barite supersaturation. Undulatory sheet tufa may have formed by the reaction of dissolved barium with sulphate derived from the oxidation of extracellular polysaccharide‐rich colloidal sulphur films floating in oxygenated, barite‐saturated spring water ponds. Coated bubble, oncoid‐coated grain and stromatolitic tufa with filamentous microfossils was formed in close association with sulphur‐tolerant microbes inhabiting dysoxic and oxygenated spring water tributaries and ponds. Adsorption of dissolved barium to microbial extracellular polysaccharide probably facilitated the development of these ‘biogenic’ lithotypes. Detrital conglomerate tufa was formed by barite cementation of microdetrital tufa, allochthonous lithoclasts and organic detritus, including caribou hair. Biogenic textures, organic artefacts and microfossils in the Flybye barite tufa have survived diagenetic aggradational recrystallization and precipitation of secondary cements, indicating the potential for palaeoecological information to be preserved in barite in the geological record. Similarities between the Flybye barite tufa and carbonate spring deposits demonstrate that analogous textures can develop in chemical sedimentary systems with distinct mineralogy, biology and physiochemistry.  相似文献   
908.
Two sites in the eastern Fram Strait, the Vestnesa Ridge and the Yermak Plateau, have been surveyed and sampled providing a depositional record over the last glacial‐interglacial cycle. The Fram Strait is the only deep‐water connection from the Arctic Ocean to the North Atlantic and contains a marine sediment record of both high latitude thermohaline flow and ice sheet interaction. On the Vestnesa Ridge, the western Svalbard margin, a sediment drift was identified in 1226 m of water. Gravity and multicores from the crest of the drift recovered turbidites and contourites. 14C dating indicates an age range of 8287 to 26 900 years BP (Early Holocene to Late Weichselian). The Yermak Plateau is characterized by slope sediments in 961 m of water. Gravity and multicores recovered contourites and hemipelagites. 14C ages were between 8615 and 46 437 years BP (Early Holocene to mid‐Weichselian). Downcore dinoflagellate cyst analyses from both sites provide a record of changing surface water conditions since the mid‐Weichselian, suggesting variable sea ice extent, productivity and polynyas present even during the Last Glacial Maximum. Four layers of ice‐rafted debris were also identified and correlated within the cores. These events occurred ca at 9, 24 to 25, 26 to 27 and 43 ka, asynchronous with Heinrich layers in the wider north‐east Atlantic and here interpreted as reflecting instability in the Svalbard/Barents Ice sheet and the northward advection of warm Atlantic water during the Late Weichselian. The activity of the ancestral West Spitsbergen Current is interpreted using mean sortable silt records from the cores. On the Vestnesa Ridge drift the modern mass accumulation rate, calculated using excess 210Pb, is 0·076 g cm?2 year?1. On the Yermak Plateau slope the modern mass accumulation rate is 0·053 g cm?2 year?1.  相似文献   
909.
The Mordor Alkaline Igneous Complex (MAIC) is a composite intrusion comprising a body of syenite and a funnel-shaped layered mafic–ultramafic intrusion of lamprophyric parentage, the Mordor Mafic–Ultramafic Intrusion or MMUI. The MMUI is highly unusual among intrusions of lamprophyric or potassic parentage in containing primary magmatic platinum-group element (PGE)-enriched sulfides. The MMUI sequence consists largely of phlogopite-rich pyroxenitic cumulates, with an inward dipping conformable layer of olivine-bearing cumulates divisible into a number of cyclic units. Stratiform-disseminated sulfide accumulations are of two types: disseminated layers at the base of cyclic units, with relatively high PGE tenors; and patchy PGE-poor disseminations within magnetite-bearing upper parts of cyclic units. Sulfide-enriched layers at cycle bases contain anomalous platinum group element contents with grades up to 1.5 g/t Pt+Pd+Au over 1-m intervals, returning to background values of low parts per billion (ppb) on a meter scale. They correspond to reversals in normal fractionation trends and are interpreted as the result of new magma influxes into a continuously replenished magma chamber. Basal layers have decoupled Cu and PGE peaks reflecting increasing PGE tenors up-section, due to increasing R factors during the replenishment episode, or progressive mixing of between resident PGE-poor magma and more PGE-enriched replenishing magma. The presence of PGE enriched sulfides in cumulates from a lamprophyric magma implies that low-degree partial melts do not necessarily leave sulfides and PGEs in the mantle restite during partial melting. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
910.
Combined fluid inclusion microthermometry and microanalysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) are used to constrain the hydrothermal processes forming a typical Climax-type porphyry Mo deposit. Molybdenum mineralisation at Questa occurred in two superimposed hydrothermal stages, a magmatic-hydrothermal breccia and later stockwork veining. In both stages, texturally earliest fluids were single-phase, of low salinity (~7 wt.% NaClequiv.) and intermediate-density. Upon decompression to ~300 bar, they boiled off a vapour phase, leaving behind a residual brine (up to 45 wt.% NaClequiv) at temperatures of ~420°C. The highest average Mo concentrations in this hot brine were ~500 μg/g, exceeding the Mo content of the intermediate-density input fluid by about an order of magnitude and reflecting pre-concentration of Mo by fluid phase separation prior to MoS2 deposition from the brine. Molybdenum concentrations in brine inclusions, then, decrease down to 5 μg/g, recording Mo precipitation in response to cooling of the saline liquid to ~360°C. Molybdenite precipitation from a dense, residual and probably sulphide-depleted brine is proposed to explain the tabular shape of the ore body and the absence of Cu-Fe sulphides in contrast to the more common Cu-Mo deposits related to porphyry stocks. Cesium and Rb concentrations in the single-phase fluids of the breccia range from 2 to 8 and from 40 to 65 μg/g, respectively. In the stockwork veins, Cs and Rb concentrations are significantly higher (45–90 and 110–230 μg/g, respectively). Because Cs and Rb are incompatible and hydrothermally non-reactive elements, the systematic increase in their concentration requires two distinct pulses of fluid exsolution from a progressively more fractionated magma. By contrast, major element and ore metal concentrations of these two fluid pulses remain essentially constant. Mass balance calculations using fluid chemical data from LA-ICPMS suggest that at least 25 km3 of melt and 7 Gt of deep input fluid were necessary to provide the amount of Mo contained in the stockwork vein stage alone. While the absolute amounts of fluid and melt are uncertain, the well-constrained element ratios in the fluids together with empirical fluid/melt partition coefficients derived from the inclusion analyses suggest a high water content of the source melt of ~10%. In line with other circumstantial evidence, these results suggest that initial fluid exsolution may have occurred at a confining pressure exceeding 5 kbar. The source of the molybdenum-mineralising fluids probably was a particularly large magma chamber that crystallised and fractionated in the lower crust or at mid-crustal level, well below the shallow intrusions immediately underlying Questa and other porphyry molybdenum deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号