首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   10篇
  国内免费   3篇
测绘学   2篇
大气科学   26篇
地球物理   133篇
地质学   209篇
海洋学   27篇
天文学   42篇
综合类   1篇
自然地理   6篇
  2023年   2篇
  2022年   7篇
  2021年   12篇
  2020年   11篇
  2019年   7篇
  2018年   39篇
  2017年   20篇
  2016年   27篇
  2015年   22篇
  2014年   32篇
  2013年   44篇
  2012年   18篇
  2011年   27篇
  2010年   25篇
  2009年   21篇
  2008年   20篇
  2007年   12篇
  2006年   14篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1949年   1篇
排序方式: 共有446条查询结果,搜索用时 31 毫秒
311.
In this article, the effect of reservoir length on seismic performance of gravity dams to near- and far-fault ground motions is investigated. For this purpose, four finite element models of dam–reservoir–foundation interaction system are prepared by using the Lagrangian approach. In these models, the reservoir length varies from H to 4H (H: the height of dam). The Folsom gravity dam is selected as a numerical application. Two different ground motion records of 1989 Loma Prieta earthquake are used in the analyses. One of ground motions is recorded in near fault; the other is recorded in far fault. Also, the two records have the same peak ground acceleration. The study mainly consists of three parts to assess the effects of reservoir length on the seismic performance of the concrete gravity dam. In the first part, the linear time-history analyses of the four finite element models prepared for the Folsom gravity dam are performed. In the second part, the seismic performance of the dam is evaluated according to demand–capacity ratio and cumulative inelastic duration. Finally, the nonlinear time-history analyses of the finite element models of the dam are carried out by using Drucker–Prager yield criteria for dam concrete. It is seen from the analyses results that the seismic behavior of the concrete gravity dams is considerably affected from the length of the reservoir. The reservoir length of 3H is adequate for concrete gravity dams. The selection of ground motion is on of the important parts of seismic evaluation of gravity dams. Also, the frequency characteristics of the ground motion having the same peak ground acceleration affect the seismic performance of the dam. The near-fault ground motions are generally creates more stress on the dam body than far-fault ground motions. The used performance approach provides a systematic methodology for assessment of the seismic performance and necessity of nonlinear analyses for dam systems.  相似文献   
312.
Flooding is widely believed to be the most common natural disaster in Europe, and the changing climatic conditions are estimated to increase its adverse impacts. Effective flood strategies require thorough consideration of the factors underlying the flood generation mechanism and a widened display of mitigation priorities for spatially exhaustive assessments. Flood potential maps generated herein for indicating potential flood areas prove to be among powerful tools for comprehensive flood assessments. In the presented study, a countrywide characterization is achieved in this context by analyzing catchment units, which constitute the river basin systems in Turkey, through a series of spatial indices adapted from different factors effective in flood generation. The study aims to contribute to depicting priorities for in-depth flood assessments and to the re-orientation of subsequent control measures. The flood potential maps obtained for river catchments and designating individual locations with comparably higher flood potentials are expected to set light to the selection of case studies for local flood research in Turkey while contributing to decision making and policy implementation on flood control at the macroscale.  相似文献   
313.
The Nev?ehir Castle region located in the middle of Cappadocia with approximately cone shape is investigated for the existence of an underground city using the geophysical method of electrical resistivity tomography. Underground cities are commonly known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nev?ehir Castle region. Several 2.5-D resistivity profiles totaling approximately 4 km in length surrounding the Nev?ehir Castle are measured to determine the distribution of electrical resistivities under the study area. Several high resistivity anomalies with a depth range 8–20 m are discovered to associate with a systematic void structure beneath the Nev?ehir Castle. Because of the high-resolution resistivity measurement system currently employed, we were able to isolate the void anomalies from the embedding structure. Using 3-D visualization techniques, we show the extension of the void structure under the measured profiles.  相似文献   
314.
315.
Ocean Science Journal - Seasonal growth dynamics and ecology of Posidonia oceanica were studied in a space alongshore a pristine Mediterranean gulf in 2011–2012. About one-third of the...  相似文献   
316.
Potential tsunami waves were modelled on the basis of the morphology and geological setting of a late glacial submarine landslide localized in the north-eastern sector of the Sea of Marmara, using a three-dimensional algorithm with the purpose of assessing the future risk of tsunamogenic landslides in the region. The landslide occurred off the Tuzla Peninsula on the north-eastern slope of the Ç?narc?k Basin, the easternmost of the three deep Marmara basins. The mass movement appears to be related to the Main Marmara Fault that passes below the toe of the failed mass. Observations from earlier manned submersible dives suggest that the initiation of the slide was facilitated by secondary faults associated with the Hercynian orogeny and involved Palaeozoic shales dipping southwards towards the deep basin. Radiocarbon dating of core material, together with the well-dated Marmara sapropel above the chaotically mixed landslide surface, reveal that the latest landslide event occurred about 17 14C ka b.p. The uppermost scar of the landslide is found at 250 m and its toe at about 1,200 m below the present sea level. At the time of the slide, the Marmara Sea Basin was lacustrine, with its water level at ?85 m. In plan view the landslide has a distinctively triangular shape and the lateral extent of its toe is about 10 km. Multibeam bathymetric data indicate that the sliding motion probably occurred in two phases: a slower phase affecting the eastern part, characterized by an undulating surface, and a more rapid phase affecting the western part that possibly created tsunami waves. In the seismic sections, older failed slide masses can be clearly identified; these were probably displaced during marine isotopic stage 6 (~127–160 ka b.p.). The front of this buried material is located more than 1.5 km further south of the fault. We used a three-dimensional, Green’s function-based potential theory approach, rather than shallow-water equations commonly used in conventional tsunami simulations. The solution algorithm is based on a source-sink formulation and an integral equation. The results indicate that the maximum height of the tsunami in the Ç?narc?k Basin could have reached about half the average thickness of the sliding mass over a lateral extent of 7 km. Assuming an average thickness of 30 m for the landslide, and considering that the water level at 17 ka b.p. was at about ?85 m, the modelling shows that the maximum wave height generated by the slide would have been about 15–17 m.  相似文献   
317.
318.
Active fractures refer to the portions of unsaturated, connected fractures that actively conduct water. The active fracture model parameter accounts for the reduction in the number of fractures carrying water and in the fracture–matrix interface area in field-scale simulations of flow and transport in unsaturated fractured rocks. One example includes the numerical analyses of the fault test results at the Yucca Mountain site, Nevada (USA). In such applications, the active fracture model parameter is commonly used as a calibration parameter without relating it to fracture network orientations and infiltration rates. A two-dimensional, multiphase lattice-Boltzmann model was used in this study to investigate the sensitivity of the active fracture model parameter to fracture network orientation and injection scenarios for an unsaturated, variable dipping, and geometrically simple fracture network. The active fracture model parameter differed by as much as 0.11–0.44 when the effects of fracture network orientation, injection rate, and injection mode were included in the simulations. Hence, the numerical results suggest that the sensitivity of the active fracture model parameter to fracture network orientation, injection rates, and injection modes should be explored at the field-scale to strengthen the technical basis and range of applicability of the active fracture model.  相似文献   
319.
Identifying the structure of protected mountain ecosystems is an important task for understanding conservation sustainability. The study area, the F?rt?na Valley, located in the Rize City on the Eastern Blacksea Coast, is one of the biological hotspots and a National Park of Turkey. In order to identify the structure of mountain ecosystems, we generated a GIS database for the main environmental parameters of the study area, including elevation, slope and aspect layers for topographic structure, 10 year mean values of Normalized Difference Vegetation Index(NDVI), data for vegetation structure, annual mean temperature and precipitation layers for climatic structure, main soil groups for soil structure and stream flow accumulation, stream flow length and stream order layers for hydrological structure .To identify the complex relations among environmental factors in the study area a data reduction method is applied with Principal Component Analysis (PCA). PCA is performed using data of 16 layers from Geographical Information Systems (GIS). PCA analysis reduced 16 dimensions into 5 dimensions containing 75% of the variation in all data. It is also revealed that the topographic structure, mainly altitude, dominates the ecosystems of the F?rt?na Valley, but it should be considered that the interactions of environmental factors in an ecosystem dynamics are very complex. The ecosystem structure is determined by the environmental factors direct or indirect effects on energy regulation of an ecosystem. Therefore the relationship between topographic elements and other abiotic-biotic elements in the Fcrtcna Valley are important for environmental assessment and sustainability of a protected area, and these effects are explained in this study.  相似文献   
320.
The Taurus Mountain is one of the most important karstic region of the world and dolines are characteristics landforms of this area. However, the number and distribution of doline are unknown in the study area. The aims of this study are to explain the total number of dolines, distribution of doline density, effects of slope conditions and the change of doline orientation in the Taurus Mountains. According to the 1/25000 scale topographic maps utilized in this study, a total of 140,070 dolines were determined in a 13,189 km2 area on eleven high karstic plateaus bordered by steep slopes and deep gorges. These plateaus are substantially affected by highly-faulted and jointed systems and about 80% of each plateau is covered with neritic limestone. The dolines are located at an elevation between 10 and 2870 m. Average elevation of all dolines is 1842 m. 90% of dolines are located between 1300 and 2270 m and only 5% of dolines found under 1330 m. According to this results, the densest doline zone corresponds to the alpine and periglacial zone above the treeline. Doline density reaches?>?100 doline/km2 on Mt. Anamas and the Seyran, Geyik and Akda? ranges as well as the Ta?eli plateau. Maximum density (187 doline/km2) is found on the Akda? Mountains. However, 66% of the study area is characterized by low density, 29.9% with moderate density, 3.4% with high density and 0.7% with very high density. The highest doline densities are seen on gentle slopes (15°–25°/km2) and steep slopes (>?35°/km2) are limited doline distribution. According to the rose diagram formed by the azimuths of the long axis of the dolines at the Central Taurus, two direction are dominant in doline orientations (NW–SE and NE–SW). However, dominant directions are NE-SW at eastern, NE–SW and NW–SE at central and NW-SE at western part of the Central Taurus. According to this elongations, doline orientations are formed an arc which is formed by tectonic evolution of the Central Taurus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号