首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31895篇
  免费   5964篇
  国内免费   7738篇
测绘学   2115篇
大气科学   6538篇
地球物理   8692篇
地质学   15877篇
海洋学   4162篇
天文学   1440篇
综合类   3020篇
自然地理   3753篇
  2024年   208篇
  2023年   626篇
  2022年   1529篇
  2021年   1753篇
  2020年   1399篇
  2019年   1557篇
  2018年   1751篇
  2017年   1642篇
  2016年   1845篇
  2015年   1562篇
  2014年   1863篇
  2013年   1907篇
  2012年   1799篇
  2011年   1825篇
  2010年   1836篇
  2009年   1712篇
  2008年   1557篇
  2007年   1574篇
  2006年   1197篇
  2005年   1135篇
  2004年   887篇
  2003年   893篇
  2002年   927篇
  2001年   860篇
  2000年   1047篇
  1999年   1471篇
  1998年   1222篇
  1997年   1215篇
  1996年   1106篇
  1995年   1022篇
  1994年   868篇
  1993年   789篇
  1992年   631篇
  1991年   445篇
  1990年   348篇
  1989年   317篇
  1988年   295篇
  1987年   161篇
  1986年   172篇
  1985年   114篇
  1984年   89篇
  1983年   76篇
  1982年   78篇
  1981年   62篇
  1980年   66篇
  1979年   48篇
  1978年   23篇
  1977年   11篇
  1974年   11篇
  1958年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Parametric transduction offers valuable advantages for underwater acoustic communications. Perhaps the most significant benefit is the fact that high directivity is achieved by means of a physically small transmit transducer. This feature may, ultimately, be employed to permit long-range, low-frequency communication using a compact source. The high directivity is desirable to combat multipath propagation and to achieve data communications in water which is shallow by comparison with range. A real-time, high data-rate “model” differential phase shift keying (DPSK) communication system has been constructed and demonstrated. This system uses parametric transduction, with a 300-kHz primary frequency and a 50-kHz secondary frequency. Experimental results show that the system can be employed to combat multipath propagation in shallow water and can achieve high data-rate text and color image transmission at 10 and 20 kb s-1 for 2-DPSK and 4-DPSK, respectively, through a transmission bandwidth of 10 kHz. The “model” system was developed to confirm performance predictions for a future, operational long-range link employing a 50-kHz primary frequency and a 5-kHz secondary frequency  相似文献   
2.
3.
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
Sdsealbedoisdefinedasaratioofreflectivesolarradiationtototalacradiation,whichcanindicatetheaborptionandreflectivecapabilityofthe~hforsolarradiation.Itisan~tfactortoinfluencethes~radiationbalance,espeiallyfortheformationandvariationoflocalndcroclirnate.Generally,theactualdatafromo~tionalstationSforrebationareedintheanalysisofsolacealal.HOwever,therepresentativenessOfthedateisIratedduetothescarcityofobservationalstationandunevendistributionofs~condition.Afterthe1960s,theanalysisfors~ealbedoise…  相似文献   
5.
This paper discusses the results of geoacoustic inversion carried out using explosive charge data from the Asian Seas International Acoustic Experiment (ASIAEX) East China Sea (ECS) Experiment. A multifrequency incoherent matched-field inversion processor and a genetic algorithm (GA) are used for the inversion. A multistep matched field inversion approach is presented, which makes use of the varying sensitivities of wave fields at various frequencies to reduce the inversion problem into a sequence of smaller inversions with fewer unknowns to estimate at each stage. Different parameters are estimated using data at different frequencies according to their sensitivities. Inversion results for different areas in the ECS region are summarized and compared with core data.  相似文献   
6.
四川石棉大水沟独立碲矿床堪称世界首例,其矿体两侧的围岩蚀变较窄,且蚀变带与矿脉及未蚀变岩呈清楚而截然的接触关系。主要围岩蚀变为白云石化、白(绢)云母化、云英岩化及电气石化等。这些蚀变作用分别发生于177.7~165.1Ma和91.71~80.19Ma。蚀变作用过程中SiO2大量析出,Al2O3、TiO2、CaO、MgO、K2O、H2O、CO2、Fe2O3、MnO则有不同程度地带入。与此同时,REE在此过程中包集体迁出,Te、Bi、AS等元素的含量则决定于蚀变作用及其强度,而与原岩无关。  相似文献   
7.
Based on the CN and C2 comae isophotes for two comets (1961 IX and 1970 16) given by Rahe et al. and the relevant theory of physical chemistry, we have deduced the distributions of the CN and C2 modecules in the coma, their scale heights and mean lifetimes. The results favour the viewpoint that HCN is the parent of CN, and that C2H2 is the parent of C2.  相似文献   
8.
1 HYDROLOGIC FEATURES Lingdingyang Estuary, located at the middle south of Guangdong Province, is a bell-shaped estuary with a north-south direction. Its area is about 2100km2. The north of Qi′ao Island and Inner-Lingding Island, and the south of Humen are grouped as Neilingdingyang Estuary, having an area of 1041km2. Affected by topography, runoff and tide, its dynamic condition is very complicated. Different water areas have different hydrologic features. The topography under …  相似文献   
9.
Wintertime oxygen and pH profiles across the marginal ice zone of the central and southeastern Bering Sea shelf are analyzed and compared with summer data. During the winter, at water depths shallower than 75 m, the water column is homogeneous and near freezing. Between the 75- and 200-m isobaths the structure is essentially two-layered, a cool and fresh upper layer overlying a warmer, more saline bottom layer. The oxygen concentration in the surface mixed layer is higher than the summer values, but the degree of saturation is lower because of the lower temperature in winter. The oxygen degree of saturation in the bottom mixed layer on the shelf in winter are higher than in the surface water in winter and the bottom water in summer.In summer the oxygen and carbon dioxide data show extreme variability governed primarily by biological processes. Winter oxygen and pH data, however, do not scatter as much as the summer data and indicate conservative mixing of several sub-surface water masses. The surface water is undersaturated in both oxygen and carbon dioxide and seems to absorb oxygen, but little carbon dioxide, from the atmosphere.Two stations were occupied in the Aleutian Basin. The homogeneous surface layer has the same oxygen and pH values as in the minimum temperature layer observed in the summer by other investigators at the same location. The result substantiates the hypothesis of early investigators that the summer minimum temperature layer is the remnant local winter water. All winter surface waters sampled are undersaturated with respect to oxygen, suggesting that the input of oxygen through the air-sea exchange does not keep up with the rate of upwelling and cooling, which reduces the degree of oxygen saturation. Surface carbon dioxide is also undersaturated because of cooling. The maximum temperature layer at these two Aleutian Basin stations is warmer, fresher, and contains more oxygen, but less carbon dioxide, than in the summer, suggesting advective input of some nonlocal seawater.  相似文献   
10.
The authors analyzed the data collected in the Ecological Station Jiaozhou Bay from May 1991 to November 1994, including 12 seasonal investigations, to determine the characteristics, dynamic cycles and variation trends of the silicate in the bay. The results indicated that the rivers around Jiaozhou Bay provided abundant supply of silicate to the bay. The silicate concentration there depended on river flow variation. The horizontal variation of silicate concentration on the transect showed that the silicate concentration decreased with distance from shorelines. The vertical variation of it showed that silicate sank and deposited on the sea bottom by phytoplankton uptake and death, and zooplankton excretion. In this way, silicon would endlessly be transferred from terrestrial sources to the sea bottom. The silicon took up by phytoplankton and by other biogeochemical processes led to insufficient silicon supply for phytoplankton growth. In this paper, a 2D dynamic model of river flow versus silicate concentration was established by which silicate concentrations of 0.028–0.062 μmol/L in seawater was yielded by inputting certain seasonal unit river flows (m3/s), or in other words, the silicate supply rate; and when the unit river flow was set to zero, meaning no river input, the silicate concentrations were between 0.05–0.69 μmol/L in the bay. In terms of the silicate supply rate, Jiaozhou Bay was divided into three parts. The division shows a given river flow could generate several different silicon levels in corresponding regions, so as to the silicon-limitation levels to the phytoplankton in these regions. Another dynamic model of river flow versus primary production was set up by which the phytoplankton primary production of 5.21–15.55 (mgC/m2·d)/(m3/s) were obtained in our case at unit river flow values via silicate concentration or primary production conversion rate. Similarly, the values of primary production of 121.98–195.33 (mgC/m2·d) were achieved at zero unit river flow condition. A primary production conversion rate reflects the sensitivity to silicon depletion so as to different phytoplankton primary production and silicon requirements by different phytoplankton assemblages in different marine areas. In addition, the authors differentiated two equations (Eqs. 1 and 2) in the models to obtain the river flow variation that determines the silicate concentration variation, and in turn, the variation of primary production. These results proved further that nutrient silicon is a limiting factor for phytoplankton growth. This study was funded by NSFC (No. 40036010), and the Director's Fund of the Beihai Sea Monitoring Center, the State Oceanic Administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号