首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
天文学   6篇
  2002年   1篇
  2000年   1篇
  1998年   4篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
We present a harmonic model for the data analysis of an all-sky cosmic microwave background survey, such as Planck , where the survey is obtained through ring-scans of the sky. In this model, resampling and pixelization of the data are avoided. The spherical transforms of the sky at each frequency, in total intensity and polarization, as well as the bright-point-source catalogue, are derived directly from the data reduced on to the rings. Formal errors and the most significant correlation coefficients for the spherical transforms of the frequency maps are preserved. A clean and transparent path from the original samplings in the time domain to the final scientific products is thus obtained. The data analysis is largely based on Fourier analysis of rings; the positional stability of the instrument's spin axis during these scans is a requirement for the data model and is investigated here for the Planck satellite. Brighter point sources are recognized and extracted as part of the ring reductions and, on the basis of accumulated data, used to build the bright-point-source catalogue. The analysis of the rings is performed in an iterative loop, involving a range of geometric and detector response calibrations. The geometric calibrations are used to reconstruct the paths of the detectors over the sky during a scan and the phase offsets between scans of different detectors; the response calibrations eliminate short- and long-term variations in detector response. Point-source information may allow the reconstruction of the beam profile. The reconstructed spherical transforms of the sky in each frequency channel form the input to the subsequent analysis stages. Although the methods in this paper were developed with the data processing for the Planck satellite in mind, there are many aspects which have wider implementation possibilities, including the construction of real-space pixelized maps.  相似文献   
2.
3.
4.
We use the present observed number density of large X-ray clusters to constrain the amplitude of matter density perturbations induced by cosmic strings on the scale of 8  h −1 Mpc ( σ 8), in both open cosmologies and flat models with a non-zero cosmological constant. We find a slightly lower value of σ 8 than that obtained in the context of primordial Gaussian fluctuations generated during inflation. This lower normalization of σ 8 results from the mild non-Gaussianity on cluster scales, where the one-point probability distribution function is well approximated by a χ 2 distribution and thus has a longer tail than a Gaussian distribution. We also show that σ 8 normalized using cluster abundance is consistent with the COBE normalization.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号