In order to constrain better the distribution, age, geochemistry and origin of widespread Cenozoic intraplate volcanism on Zealandia, the New Zealand micro-continent, we report new 40Ar/39Ar and geochemical (major and trace element and Sr–Nd–Hf–Pb isotope) data from offshore (Chatham Rise, Campbell and Challenger Plateaus) and onland (North, South, Auckland, Campbell, Chatham and Antipodes Islands of New Zealand) volcanism on Zealandia. The samples include nephelinite, basanite through phonolite, alkali basalt through trachyte/rhyolite, and minor tholeiite and basaltic andesite, all of which have ocean island basalt (OIB)-type trace element signatures and which range in age from 64.8 to 0.17 Ma. Isotope ratios show a wide range in composition (87Sr/86Sr = 0.7027–0.7050, 143Nd/144Nd = 0.5128–0.5131, 177Hf/176Hf = 0.2829–0.2831, 206Pb/204Pb = 18.62–20.67, 207Pb/204Pb = 15.54–15.72 and 208Pb/204Pb = 38.27–40.34) with samples plotting between mid-ocean-ridge basalts (MORB) and Cretaceous New Zealand intraplate volcanic rocks.Major characteristics of Zealandia's Cenozoic volcanism include longevity, irregular distribution and lack of age progressions in the direction of plate motion, or indeed any systematic temporal or spatial geochemical variations. We believe that these characteristics can be best explained in the context of lithospheric detachment, which causes upwelling and melting of the upper asthenospheric mantle and portions of the removed lithosphere. We propose that a large-scale seismic low-velocity anomaly, that stretches from beneath West Antarctica to Zealandia at a depth of > 600 km may represent a geochemical reservoir that has been in existence since the Cretaceous, and has been supplying the upper mantle beneath Zealandia with HIMU-type plume material throughout the Cenozoic. In addition, the sources of the Cenozoic intraplate volcanism may be at least partially derived through melting of locally detached Zealandia lower lithosphere. 相似文献
A newly recognized 2-m-thick trachytic volcanic ash deposit from northwestern Greece is dated at 374,000 ± 7000 yr and correlated with the Middle Pleistocene volcanic activity of central Italy. The deposit represents ash fallout from one of the largest volcanic eruptions in Europe of the past 400,000 yr and should provide an important stratigraphic marker within the poorly dated Middle Pleistocene deposits of Italy and Greece. 相似文献
The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed. 相似文献
Over 40 studies that analyse future GHG emissions allowances or reduction targets for different regions based on a wide range of effort-sharing approaches and long-term concentration stabilization levels are compared. This updates previous work undertaken for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Regional reduction targets differ significantly for each effort-sharing approach. For example, in the Organisation for Economic Co-operation and Development (OECD) 1990 region, new proposals that emphasize the equity principles of responsibility, capability, and need, and those based on equal cumulative per capita emissions (carbon budgets), lead to relatively stringent emissions reduction targets. In order to reach a low concentration stabilization level of 450?ppm CO2e, the allowances under all effort sharing approaches in OECD1990 for 2030 would be approximately half of the emissions of 2010 with a large range, roughly two-thirds in the Economies in Transition (EIT), roughly at the 2010 emissions level or slightly below in Asia, slightly above the 2010 level in the Middle East and Africa and well below the 2010 level in Latin America. For 2050, allowances in OECD1990 and EIT would be a fraction of today's emissions, approximately half of 2010 emission levels in Asia, and possibly less than half of the 2010 level in Latin America.Policy relevanceThe concept of equity and the stringency of future national GHG reduction targets are at the heart of the current debate on the new international climate change agreement to be adopted in 2015. Policy insights gained from an analysis of over 40 studies, which have quantitatively analysed the proposed GHG reduction targets, are presented. It is found that the outcome of effort-sharing approaches is often largely determined by the way the equity principle is implemented and that the distributional impacts of such approaches can be significantly different depending on the criteria used, the stabilization level and shape of the global emissions pathway. However, the current literature only covers a small proportion of the possible allocation approaches. There should thus be an in-depth modelling comparison to ensure consistency and comparability of results and inform decision making regarding the reduction of GHG emissions. 相似文献
We describe a new calibration procedure included in the production process of Scintec’s displaced-beam laser scintillometers (SLS-20/40) and its effect on their measurement accuracy. The calibration procedure determines the factual displacement distances of the laser beams at the receiver and transmitter units, instead of assuming a prescribed displacement distance of 2.70 mm. For this study, four scintillometers operated by Wageningen University and the German Meteorological Service were calibrated by Scintec and their data re-analyzed. The results show that significant discrepancies may exist between the factual and the prescribed displacement distances. Generally, the factual displacement is about 0.1 mm smaller than 2.70 mm, but extremes varied between 0.04 and 0.24 mm. Correspondingly, using non-calibrated scintillometers may result in biases as large as 20 % in the estimates of the inner-scale length, $l_{0}$, the structure parameter of the refractive index, $C_{n_{_2}}$, and the friction velocity, $u_{*}$. The bias in the sensible heat flux was negligible, because biases in $C_{n_{_2}}$ and $u_{*}$ cancel. Hence, the discrepancies explain much of the long observed underestimations of $u_{*}$ determined by these scintillometers. Furthermore, the calibration improves the mutual agreement between the scintillometers for $l_{0}$, but especially for $C_{n_{_2}}$. Finally, it is noted that the measurement specifications of the scintillometer do not expire and hence the results of the calibration can be applied retroactively. 相似文献
While carbon pricing is widely seen as a crucial element of climate policy and has been implemented in many countries, it also has met with strong resistance. We provide a comprehensive overview of public perceptions of the fairness of carbon pricing and how these affect policy acceptability. To this end, we review evidence from empirical studies on how individuals judge personal, distributional and procedural aspects of carbon taxes and cap-and-trade. In addition, we examine preferences for particular redistributive and other uses of revenues generated by carbon pricing and their role in instrument acceptability. Our results indicate a high concern over distributional effects, particularly in relation to policy impacts on poor people, in turn reducing policy acceptability. In addition, people show little trust in the capacities of governments to put the revenues of carbon pricing to good use. Somewhat surprisingly, most studies do not indicate clear public preferences for using revenues to ensure fairer policy outcomes, notably by reducing its regressive effects. Instead, many people prefer using revenues for ‘environmental projects’ of various kinds. We end by providing recommendations for improving public acceptability of carbon pricing. One suggestion to increase policy acceptability is combining the redistribution of revenue to vulnerable groups with the funding for environmental projects, such as on renewable energy.
Key policy insights
If people perceive carbon pricing instruments as fair, this increases policy acceptability and support.
People’s satisfaction with information provided by the government about the policy instrument increases acceptability.
While people express high concern over uneven distribution of the policy burden, they often prefer using carbon pricing revenues for environmental projects instead of compensation for inequitable outcomes.
Recent studies find that people’s preferences shift to using revenues for making policy fairer if they better understand the functioning of carbon pricing, notably that relatively high prices of CO2-intensive goods and services reduce their consumption.
Combining the redistribution of revenue to support both vulnerable groups and environmental projects, such as on renewable energy, seems to most increase policy acceptability.
Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance in eight sub-European boxes. Four sources of uncertainty can be evaluated with the material provided by the PRUDENCE project. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according to the field, the region and the season, but the role of boundary forcing is generally greater than the role of the RCM, in particular for temperature. Maps of minimum expected 2m temperature and precipitation responses for the IPCC-A2 scenario show that, despite the above mentioned uncertainties, the signal from the PRUDENCE ensemble is significant. 相似文献
In the western United States, persistent and recurrent flow patterns not only modulate precipitation events but also result in prolonged surface inversion episodes. In this region, the frequency of persistent ridge/trough events ranges between 20 and 40 days, well within the intraseasonal timescale. Based on NCEP reanalysis data starting at 1949, with a focus on the interior West, we observed that episodes of prolonged ridge/trough events appear to occur about a week later every year and resets every 5–7 years—a previously undocumented phenomenon examined herein. Diagnostic analyses indicate that the interplay between regional intraseasonal flow patterns and the North Atlantic Oscillation (NAO) alternates the preferred timeframe for the persistent ridge/trough events to occur. This may result from different phases of the NAO shifting the winter mean ridge and such shifts modulate the occurrence and timing of persistent ridge/trough events. When the timing changes evolve around the quasi-6 years cycle of the NAO, the resultant evolution forms what appears to be a steady phase delay in the ridge/trough events year after year. These results are a further step in disclosing the multiple-scale interaction between intraseasonal and interannual modes and its regional climate/weather impact. 相似文献
To understand the response of the Greenland ice sheet to climate change the so-called ablation zone is of particular importance,
since it accommodates the yearly net surface ice loss. In numerical models and for data analysis, the bulk aerodynamic method
is often used to calculate the turbulent surface fluxes, for which the aerodynamic roughness length (z0) is a key parameter. We present, for the first time, spatial and temporal variations of z0 in the ablation area of the Greenland ice sheet using year-round data from three automatic weather stations and one eddy-correlation
mast. The temporal variation of z0 is found to be very high in the lower ablation area (factor 500) with, at the end of the summer melt, a maximum in spatial
variation for the whole ablation area of a factor 1000. The variation in time matches the onset of the accumulation and ablation
season as recovered by sonic height rangers. During winter, snow accumulation and redistribution by snow drift lead to a uniform
value of z0≈ 10−4 m throughout the ablation area. At the beginning of summer, snow melt uncovers ice hummocks and z0 quickly increases well above 10−2 m in the lower ablation area. At the end of summer melt, hummocky ice dominates the surface with z0 > 5 × 10−3 m up to 60 km from the ice edge. At the same time, the area close to the equilibrium line (about 90 km from the ice edge)
remains very smooth with z0 = 10−5 m. At the beginning of winter, we observed that single snow events have the potential to lower z0 for a very rough ice surface by a factor of 20 to 50. The total surface drag of the abundant small-scale ice hummocks apparently
dominates over the less frequent large domes and deep gullies. The latter results are verified by studying the individual
drag contributions of hummocks and domes with a drag partition model. 相似文献
We test a surface renewal model that is widely used over snow and ice surfaces to calculate the scalar roughness length (zs), one of the key parameters in the bulk aerodynamic method. For the first time, the model is tested against observations that cover a wide range of aerodynamic roughness lengths (z0). During the experiments, performed in the ablation areas of the Greenland ice sheet and the Vatnajökull ice cap in Iceland, the surface varied from smooth snow to very rough hummocky ice. Over relatively smooth snow and ice with z0 below a threshold value of approximately 10?3 m, the model performs well and in accord with earlier studies. However, with growing hummock size, z0 increases well above the threshold and the bulk aerodynamic flux becomes significantly smaller than the eddy-correlation flux (e.g. for z0 = 0.01 m, the bulk aerodynamic flux is about 50% smaller). Apparently, the model severely underpredicts zs over hummocky ice. We argue that the surface renewal model does not account for the deep inhomogeneous roughness sublayer (RSL) that is generated by the hummocks. As a consequence, the homogeneous substrate ice grain cover becomes more efficiently ‘ventilated’. Calculations with an alternative model that includes the RSL and was adapted for use over hummocky ice, qualitatively confirms our observations. We suggest that, whenever exceedance of the threshold occurs (z0 > 10?3 m, i.e., an ice surface covered with at least 0.3-m high hummocks), the following relation should be used to calculate scalar roughness lengths, ln (zs/z0) = 1.5 ? 0.2 ln (Re*) ? 0.11(ln (Re*))2. 相似文献