首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2251篇
  免费   77篇
  国内免费   22篇
测绘学   44篇
大气科学   169篇
地球物理   1031篇
地质学   594篇
海洋学   65篇
天文学   398篇
综合类   6篇
自然地理   43篇
  2021年   27篇
  2020年   29篇
  2018年   59篇
  2017年   78篇
  2016年   104篇
  2015年   78篇
  2014年   101篇
  2013年   114篇
  2012年   53篇
  2011年   71篇
  2010年   88篇
  2009年   78篇
  2008年   69篇
  2007年   61篇
  2006年   39篇
  2005年   24篇
  2004年   33篇
  2003年   39篇
  2002年   47篇
  2001年   30篇
  2000年   36篇
  1999年   25篇
  1998年   42篇
  1997年   24篇
  1996年   47篇
  1995年   27篇
  1994年   32篇
  1993年   43篇
  1992年   35篇
  1991年   30篇
  1990年   37篇
  1989年   27篇
  1988年   32篇
  1987年   26篇
  1986年   36篇
  1985年   19篇
  1984年   35篇
  1983年   31篇
  1982年   35篇
  1981年   26篇
  1980年   23篇
  1979年   39篇
  1978年   30篇
  1977年   26篇
  1976年   19篇
  1975年   22篇
  1974年   26篇
  1973年   26篇
  1972年   27篇
  1971年   29篇
排序方式: 共有2350条查询结果,搜索用时 15 毫秒
901.
tWe analyse continuous measurements of groundwater level in two deep wells VS-3 and V-28 at the experimental hydro-meteorological station situated on the NE margin of the Bohemian Massif, central Europe, characterized by the weak intraplate seismic activity. The aim of our study is to examine the relationships between changes in the groundwater level and earthquake occurrence. Based on the tidal and barometric response of the water level, we estimated selected elastic parameters of the observed aquifers: the shear modulus G, the Skempton ratio B, the drained matrix compressibility β and the undrained compressibility βu. Using these parameters and assuming the homogeneous poroelastic material, we derived the sensitivity of the wells to the crustal volume strain. During the observation period from November 1998 to December 2005 we detected in the VS-3 well two pre-seismic steps, related to August 10, 2005 (M = 2.4) and October 25, 2005 (M = 3.3) earthquakes. Amplitudes of the recorded precursory changes (+6 cm and +15 cm) are several times higher than the values predicted from the theoretical precursory crustal strain and the strain sensitivity of the well. Therefore, we presume that the observed pre-seismic water level steps can be attributed to heterogeneity of poroelastic material. We consequently propose the hypothesis of the origin of precursory events based on the presumption of a sensitive site, at which the well is situated.  相似文献   
902.
The ratio of P- to S-wave velocities, VP/VS, is an important parameter characterizing rock composition and fluid saturation. We have studied properties of the ratio in the West-Bohemian seismically active region, using data from the earthquake swarm which occurred here in 2008. The earthquake swarm was well recorded by 23 seismic stations from epicentral distances less than 25 km. We selected a subset of 158 events with local magnitudes between 1.5 and 3.8. Applying the Wadati method to the measured arrival times of P and S waves, we arrived at an average value of VP/VS =1.68 ± 0.01. This differs a little from the value of VP/VS = 1.70, which is routinely used for earthquake locations in the region at present. Moreover, it was recognized that the points in the Wadati graphs for some stations were systematically deviated from the mean straight lines. In particular, the stations with the largest positive deviations (above the mean straight lines) are situated close to the Mariánské Lázně Fault and to some intensive mofettes. Further analyses revealed reduced P- and S-wave velocities along the seismic rays toward these anomalous stations. In our opinion, the seismic waves arriving at the anomalous stations probably propagated along a fault or another zone of weakness. In this way, our results support the hypothesis that the Mariánské Lázně Fault is a deep-seated fault continuing down to the seismically active zone of local earthquakes. From a general point of view, this study demonstrates that even some narrow structural anomalies in the crust, such as fault zones, can be recognized by the simple Wadati method if data from a dense seismic network are available.  相似文献   
903.
We consider the partial derivatives of travel time with respect to both spatial coordinates and perturbation parameters. These derivatives are very important in studying wave propagation and have already found various applications in smooth media without interfaces. In order to extend the applications to media composed of layers and blocks, we derive the explicit equations for transforming these travel–time derivatives of arbitrary orders at a general smooth curved interface between two arbitrary media. The equations are applicable to both real–valued and complex–valued travel time. The equations are expressed in terms of a general Hamiltonian function and are applicable to the transformation of travel–time derivatives in both isotropic and anisotropic media. The interface is specified by an implicit equation. No local coordinates are needed for the transformation.  相似文献   
904.
Orthoimage maps have become very popular and frequently produced cartographical outputs in geosciences during recent years. However, the unambiguous terminology, definitions, content and appearance specifications have not been widely researched. This paper deals with the new definition of the orthoimage map, its component delineation, and basic classification. The authors present aspects of topographic and thematic orthoimage maps. The main theoretical achievement of the authors’ research is the determining of the image component and the symbol component of orthoimage map content. The presented orthoimage map concept is applicable in geophysics practise which is demonstrated by three presented topographic and thematic orthoimage maps. They differ according to the relationship between topographic background and thematic content, and between image and symbol component. The image component can be a carrier of thematic geophysical information, or it can be used as topographic background for geophysics-oriented symbol component. All prototypes give examples of how to design, complete and use image-based cartographical products. Those variants might be used as guidelines for future orthoimage map production, especially for the geophysics community.  相似文献   
905.
An envelope‐based pushover analysis procedure is presented that assumes that the seismic demand for each response parameter is controlled by a predominant system failure mode that may vary according to the ground motion. To be able to simulate the most important system failure modes, several pushover analyses need to be performed, as in a modal pushover analysis procedure, whereas the total seismic demand is determined by enveloping the results associated with each pushover analysis. The demand for the most common system failure mode resulting from the ‘first‐mode’ pushover analysis is obtained by response history analysis for the equivalent ‘modal‐based’ SDOF model, whereas demand for other failure modes is based on the ‘failure‐based’ SDOF models. This makes the envelope‐based pushover analysis procedure equivalent to the N2 method provided that it involves only ‘first‐mode’ pushover analysis and response history analysis of the corresponding ‘modal‐based’ SDOF model. It is shown that the accuracy of the approximate 16th, 50th and 84th percentile response expressed in terms of IDA curves does not decrease with the height of the building or with the intensity of ground motion. This is because the estimates of the roof displacement and the maximum storey drift due to individual ground motions were predicted with a sufficient degree of accuracy for almost all the ground motions from the analysed sets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
906.
A new approach is presented for improving the computational efficiency of regional-scale ground water models based on the analytic element method (AEM). The algorithm is an extension of the existing "superblock" algorithm, which combines the effects of multiple analytic elements into Laurent series and Taylor series (superblock expansions). With the new "nested superblock" formulation, Laurent series are nested in a hierarchical (quad-tree) data structure with direct mathematical relationships between parent and child superblock coefficients. Nested superblocks significantly accelerate the evaluation of the complex potential and discharge function in models that contain a large number of analytic elements at multiple scales. This evaluation process, the primary computational cost of AEM models, is required to determine the element coefficients, generate contour plots, and trace pathlines. The performance of the nested superblocks is demonstrated with a simplified model based on the Lake Ontario watershed geometry comprising thousands of hydrogeologic features at multiple geographic scales.  相似文献   
907.
Statistical analyses of landslide deposits from similar areas provide information on dynamics and rheology, and are the basis for empirical relationships for the prediction of future events. In Central America landslides represent an important threat in both volcanic and non-volcanic areas. Data, mainly from 348 landslides in Nicaragua, and 19 in other Central American countries have been analyzed to describe landslide characteristics and to search for possible correlations and empirical relationships. The mobility of a landslide, expressed as the ratio between height of fall (H) and run-out distance (L) as a function of the volume and height of fall; and the relationship between the height of fall and run-out distance were studied for rock falls, slides, debris flows and debris avalanches. The data show differences in run-out distance and landslide mobility among different types of landslides and between debris flows in volcanic and non-volcanic areas. The new Central American data add to and seem consistent with data published from other regions. Studies combining field observations and empirical relationships with laboratory studies and numerical simulations will help in the development of more reliable empirical equations for the prediction of landslide run-out, with applications to hazard zonation and design of optimal risk mitigation measures.  相似文献   
908.
The Ljubija siderite deposits, hosted by a Carboniferous sedimentary complex within the Inner Dinarides, occur as stratabound replacement-type ore bodies in limestone blocks and as siderite–sulfides veins in shale. Three principal types of ore textures have been recognized including massive dark siderite and ankerite, siderite with zebra texture, and siderite veins. The ore and host rocks have been investigated by a combination of inorganic (major, trace, and rare earth element concentrations), organic (characterization of hydrocarbons including biomarkers), and stable isotope geochemical methods (isotope ratios of carbonates, sulfides, sulfates, kerogen, and individual hydrocarbons). New results indicate a marine origin of the host carbonates and a hydrothermal–metasomatic origin of the Fe mineralization. The differences in ore textures (e.g., massive siderite, zebra siderite) are attributed to physicochemical variations (e.g., changes in acidity, temperature, and/or salinity) of the mineralizing fluids and to the succession and intensity of replacement of host limestone. Vein siderite was formed by precipitation from hydrothermal fluids in the late stage of mineralization. The equilibrium fractionation of stable isotopes reveals higher formation temperatures for zebra siderites (around 245°C) then for siderite vein (around 185°C). Sulfur isotope ratios suggest Permian seawater or Permian evaporites as the main sulfur source. Fluid inclusion composition confirms a contribution of the Permian seawater to the mineralizing fluids and accord with a Permian mineralization age. Organic geochemistry data reflect mixing of hydrocarbons at the ore site and support the hydrothermal–metasomatic origin of the Ljubija iron deposits.  相似文献   
909.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   
910.
Ground velocity records of the 20 May 2016 Petermann Ranges earthquake are used to calculate its centroid-moment-tensor in the 3?D heterogeneous Earth model AuSREM. The global-centroid-moment-tensor reported a depth of 12?km, which is the shallowest allowed depth in the algorithm. Solutions from other global and local agencies indicate that the event occurred within the top 12?km of the crust, but the locations vary laterally by up to 100?km. We perform a centroid-moment-tensor inversion through a spatiotemporal grid search in 3?D allowing for time shifts around the origin time. Our 3?D grid encompasses the locations of all proposed global solutions. The inversion produces an ensemble of solutions that constrain the depth, lateral location of the centroid, and strike, dip and rake of the fault. The centroid location stands out with a clear peak in the correlation between real and synthetic data for a depth of 1?km at longitude 129.8° and latitude –25.6°. A collection of acceptable solutions at this centroid location, produced by different time shifts, constrain the fault strike to be 304?±?4° or 138?±?1°. The two nodal planes have dip angles of 64?±?5° and 26?±?4° and rake angles of 96?±?2° and 77?±?5°, respectively. The southwest-dipping nodal plane with the dip angle of 64° could be seen as part of a near vertical splay fault system at the end of the Woodroffe Thrust. The other nodal plane could be interpreted as a conjugate fault rupturing perpendicular to the splay structure. We speculate that the latter is more likely, since the hypocentres reported by several agencies, including the Geoscience Australia, as well as the majority of aftershocks are all located to the northeast of our preferred centroid location. Our best estimate for the moment magnitude of this event is 5.9. The optimum centroid is located on the 20?km surface rupture caused by the earthquake. Given the estimated magnitude, the long surface rupture requires only ~4?km of rupture down dip, which is in agreement with the shallow centroid depth we obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号