Guangdong is the most economically developed province in China, which is a large CO2 emitter and hence is faced with severe carbon reduction pressures. In this paper, a cost assessment methodology based on scenario analysis is presented. A CO2 source and sink database was built at Guangdong after detailed investigations on the point sources and sedimentary basins. Fifteen transport and five storage scenarios were defined and studied, respectively. Cost estimates based on these scenarios show that during its lifetime, the costs of both transport and storage depend on the amount of CO2 processed. More CO2 being processed will bring down the unit costs of both transport and storage. However, it was observed that there is a cost inflection point between the storage amount of 35.2 and 52.8 Mt/year, which means that as the storage amount increases, the storage cost will first decrease and then increase. Source region S1 in Guangdong has been recommended for an early chance of CO2 storage. Preliminary cost comparisons have shown that the results presented in this study are reasonable, but to improve the cost assessment accuracy of offshore CO2 storage, a methodology based on a CO2 storage design that can integrate local prices needs to be further developed. 相似文献
The dehydration melting of the natural rock at high pressure is important to investigating the magma formation in the earth’s interior. Since the 1970s, a lot of geological scientists have paid more atten- tion to the dehydration melting of the natural rock[1―5]. Previous experiments of dehydration melting and observations of fieldwork argued that the dehy- dration melting of the rock was probably the most important fashion for the melting of the lower crust rock[6―12]. The genesis of most … 相似文献
Well che89, located in the Chepaizi area in the northwest margin of Junggar basin, acquires high production industrial oil flow, which is an important breakthrough in the exploration of the south foreland slope area of Junggar basin. The Chepaizi area is near two hydrocarbon generation depressions of Sikeshu and Shawan, which have sets of hydrocarbon source rock of Carboniferous to Jurassic as well as Upper Tertiary. Geological and geochemical parameters are proper for the accumulation of mixed source crude oil. Carbon isotope, group composition and biomarkers of crude oil in Upper Tertiary of well Che89 show that the features of crude oil in Upper Tertiary Shawan Formation are between that of Permian and Jurassic, some of them are similar to these two, and some are of difference, they should be the mixed source of Permian and Jurassic. Geochemical analysis and geological study show that sand extract of Lower Tertiary Wulunguhe Formation has the same source as the crude oil and sand extract of Upper Tertiary Shawan Formation, but they are not charged in the same period. Oil/gas of Wulunguhe Formation is charged before Upper Tertiary sedimentation, and suffered serious biodegradation and oxidation and rinsing, which provide a proof in another aspect that the crude oil of Upper Tertiary Shawan Formation of well Che89 is not from hydrocarbon source rock of Lower Tertiary.