ABSTRACTGeotechnical strata are often treated as horizontally homogeneous for hydromechanical analysis due to the vertical deposition of geological layers; however, such a treatment becomes no longer valid when vertical drilling or construction causes the localized disturbance of subsurface, which would result in radial heterogeneity of geomaterials. This paper presents a poroelastic solution for the saturated multilayered cylinder where multilayer is used to represent radial heterogeneity. After the application of Laplace transform, the governing equations in cylindrical coordinates are derived to obtain the stiffness matrix between stresses, displacements, and pore water pressure. The global matrix is assembled by the boundary conditions and the compatibility of interfaces between adjacent layers. Under time-dependent horizontal compression loads, a parametric study is performed for a cylinder comprised of two layers with distinct properties, and the results show that the load frequency and radial heterogeneity play a significant role in hydromechanical behavior of geomaterials: (1) the time-varying loading can induce a negative pore pressure, and the influence of cyclic loading with a high frequency is limited near the outer surface; (2) the radial heterogeneity due to permeability and compressibility affects the development of pore pressure. 相似文献
Immersed tube tunnels are usually placed on soft soil layers in cross-sea tunnelling engineering. Owing to the influence of stratum conditions and slope design, the longitudinal distribution of substratum layers is generally uneven. Thus, the inhomogeneous deformation of the element-joint becomes the key factor in the failure of the immersed tube tunnel. Therefore, a corresponding calculation method for joint deformation is needed to explore the deformation law of immersed tube tunnels. By constructing a three-section immersed tube tunnel analysis model (TTM), the relationship between the two types of deformation of the immersed tube tunnel structure in a longitudinal nonuniform soft soil foundation is described, and the deformation characteristics of the immersed structure under different boundaries are discussed. Based on the mechanical behaviour of the joint and foundation, according to the Timoshenko beam on the Vlasov two-parameter foundation (VTM), considering the tidal cyclic load during the operation and maintenance period, an example analysis is given. Moreover, the deformation characteristics and development trend of the immersed tube tunnel under the influence of different soil layers are discussed. The obtained results have a certain guiding significance for the deformation calculation of immersed tube tunnels.