首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21194篇
  免费   4078篇
  国内免费   5476篇
测绘学   1520篇
大气科学   4160篇
地球物理   5571篇
地质学   10909篇
海洋学   3129篇
天文学   789篇
综合类   2001篇
自然地理   2669篇
  2024年   109篇
  2023年   375篇
  2022年   940篇
  2021年   1103篇
  2020年   875篇
  2019年   1032篇
  2018年   1128篇
  2017年   1050篇
  2016年   1200篇
  2015年   1027篇
  2014年   1182篇
  2013年   1379篇
  2012年   1281篇
  2011年   1294篇
  2010年   1371篇
  2009年   1266篇
  2008年   1148篇
  2007年   1187篇
  2006年   920篇
  2005年   863篇
  2004年   616篇
  2003年   619篇
  2002年   609篇
  2001年   619篇
  2000年   693篇
  1999年   942篇
  1998年   764篇
  1997年   766篇
  1996年   729篇
  1995年   648篇
  1994年   571篇
  1993年   488篇
  1992年   414篇
  1991年   285篇
  1990年   230篇
  1989年   189篇
  1988年   182篇
  1987年   105篇
  1986年   108篇
  1985年   70篇
  1984年   61篇
  1983年   55篇
  1982年   56篇
  1981年   39篇
  1980年   41篇
  1979年   33篇
  1978年   15篇
  1977年   10篇
  1975年   10篇
  1958年   16篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
751.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
752.
During the last decade, the widely distributed shrublands in northern China have shown significant signs of recovery from desertification, the result of widespread conservation practices. However, to support the current efforts in conservation, more knowledge is needed on surface energy partitioning and its biophysical controls. Using eddy‐covariance measurements made over a semi‐arid shrubland in northwest China in 2012, we examined how surface energy‐balance components vary on diurnal and seasonal scales, and how biophysical factors control bulk surface parameters and energy exchange. Sensible heat flux (H) exceeded latent heat flux (λE) during most of the year, resulting in an annual Bowen ratio (β, i.e. H/λE) of 2.0. λE exceeded H only in mid‐summer when frequent rainfall co‐occurred with the seasonal peak in leaf area index (LAI). Evapotranspiration reached a daily maximum of 3.3 mm day?1, and summed to 283 mm yr?1. The evaporative fraction (EF, i.e. λE/Rn), Priestley–Taylor coefficient (α), surface conductance (gs) and decoupling coefficient (Ω) were all positively correlated with soil water content (SWC) and LAI. The direct enhancement of λE by high vapour pressure deficit (VPD) was buffered by a concurrent suppression of gs. The gs played a direct role in controlling EF and α by mediating the effects of LAI, SWC and VPD. Our results highlight the importance of adaptive plant responses to water scarcity in regulating ecosystem energy partitioning, and suggest an important role for revegetation in the reversal of desertification in semi‐arid areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
753.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   
754.
ABSTRACT

This study investigated the late Quaternary climate and environmental characteristics of two tributary valleys (Xingmu and Depu Valleys) in the Parlung Zangbo Valley, southeastern Tibetan Plateau. Optically stimulated luminescence (OSL) samples collected from moraines at the mouth of Xingmu Valley produce a wide age range from 13.9 ka to 76 ka. The ages measured from the lenticular sand are consistent with the relative geomorphic sequence of the landforms. Lenticular sand layers below the moraine were dated to 37.9 ka and 44.7 ka, indicating that fluvial processes were likely dominant in the valley during Marine Isotope Stage (MIS) 3. The outer moraine ridges at the valley mouth were formed during 13.9 ka and 26.5 ka, corresponding to MIS2. At Depu Valley, OSL samples from two sets of lateral and terminal moraines close to the modern glacier, provide ages from 1.4 ka to 29.2 ka. The paleosol layer widely developed during 2.6 cal ka BP and 8.7 cal ka BP in the study area, reflecting a relatively warm condition during the mid-Holocene.  相似文献   
755.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
756.
757.
High‐P (HP) eclogite and associated garnet–omphacite granulite have recently been discovered in the Mulantou area, northeastern Hainan Island, South China. These rocks consist mainly of garnet, omphacite, hornblende, quartz and rutile/ilmenite, with or without zoisite and plagioclase. Textural relationships, mineral compositions and thermobarometric calculations demonstrate that the eclogite and garnet–omphacite granulite share the same three‐stage metamorphic evolution, with prograde, peak and retrograde P?T conditions of 620–680°C and 8.7–11.1 kbar, 820–860°C and 17.0–18.2 kbar, and 700–730°C and 7.1–8.5 kbar respectively. Sensitive high‐resolution ion microprobe U–Pb zircon dating, coupled with the identification of mineral inclusions in zircon, reveals the formation of mafic protoliths before 355 Ma, prograde metamorphism at c. 340–330 Ma, peak to retrograde metamorphism at c. 310–300 Ma, and subsequent pegmatite intrusion at 295 Ma. Trace element geochemistry shows that most of the rocks have a MORB affinity, with initial εNd values of +2.4 to +6.7. As with similar transitional eclogite–HP granulite facies rocks in the thickened root in the European Variscan orogen, the occurrence of relatively high P?T metamorphic rocks of oceanic origin in northeastern Hainan Island suggests Carboniferous oceanic subduction leading to collision of the Hainan continental block, or at least part of it, with the South China Block in the eastern Palaeo‐Tethyan tectonic domain.  相似文献   
758.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
759.
Spatial heterogeneity is ubiquitous in nature, which may significantly affect the soil hydraulic property curves. The models of a closed‐form functional relationship of soil hydraulic property curves (e.g. VG model or exponential model) are valid at point or local scale based on a point‐scale hydrological process, but how do scale effects of heterogeneity have an influence on the parameters of these models when the models are used in a larger scale process? This paper uses a two‐dimensional variably saturated flow and solute transport finite element model (VSAFT2) to simulate variations of pressure and moisture content in the soil flume under a constant head boundary condition. By changing different numerical simulation block sizes, a quantitative evaluation of parameter variations in the VG model, resulting from the scale effects, is presented. Results show that the parameters of soil hydraulic properties are independent of scale in homogeneous media. Parameters of α and n in homogeneous media, which are estimated by using the unsaturated hydraulic conductivity curve (UHC) or the soil water retention curve (WRC), are identical. Variations of local heterogeneities strongly affect the soil hydraulic properties, and the scale affects the results of the parameter estimations when numerical experiments are conducted. Furthermore, the discrepancy of each curve becomes considerable when moisture content becomes closer to a dry situation. Parameters estimated by UHC are totally different from the ones estimated by WRC. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
760.
Abstract

Laboratory experiments concerning azimuthal jets in two-layer rotating systems in the absence and presence of bottom topography aligned along the jets have been conducted. The jets were forced by the selective withdrawal of fluid from the upper layer of a two-fluid system contained in a circular dishpan geometry. The principal parameters measured in the experiments were the jet Rossby number, Ro, and a stratification parameter F = r 1/(λ1λ2)1/2 where r 1 is the radius of the circular disc used for the selective withdrawal (i.e., r 1 is the approximate radius of curvature of the jet) and λ12 are the internal Rossby radii of deformation in the upper and lower fluids, respectively.

The no-topography experiments show that for a sufficiently small F, the particular value depending on Ro, the jet is stable for the duration of the experiment. For sufficiently large F, again as a function of Ro, the jet becomes unstable, exhibiting horizontal wave disturbances from modes three to seven. An Ro against F flow regime diagram is presented.

Experiments are then conducted in the presence of a bottom topography having constant cross-section and extending around a mid-radius of the dishpan. The axis of the topography is in the vicinity of the jet axis forced in the no-topography experiments and the crest of the topography is in the vicinity of the interface between the two fluids (i.e., the front associated with the jet). The experiments show that in all cases investigated the jet tends to be stabilized by the bottom topography. Experiments with the topography in place, but with the interface between the fluids being above the topography crest, are shown to be unstable but more irregular than their no-topography counterparts.

Various quantitative measurements of the jet are presented. It is shown, for example, that the jet Rossby number defined in terms of the fluid withdrawal rate from the tank. Q, can be well correlated with a dimensionless vorticity gradient, VG , across the upper layer jet. This allows for an assessment of the stability characteristics of a jet based on a knowledge of VG (which can be estimated given a jet profile) and F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号