首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   15篇
  国内免费   1篇
测绘学   7篇
大气科学   31篇
地球物理   90篇
地质学   164篇
海洋学   43篇
天文学   43篇
自然地理   43篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   5篇
  2016年   12篇
  2015年   13篇
  2014年   17篇
  2013年   34篇
  2012年   18篇
  2011年   21篇
  2010年   18篇
  2009年   25篇
  2008年   18篇
  2007年   24篇
  2006年   22篇
  2005年   19篇
  2004年   23篇
  2003年   14篇
  2002年   17篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
  1977年   4篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
21.
22.
The North Anatolian Fault Zone (NAFZ) is one of the most hazardous active faults on Earth, yet its Pliocene space‐time propagation across the north Aegean domain remains poorly constrained. We use low‐temperature multi‐thermochronology and inverse thermal modelling to quantify the cooling history of the upper crust across the Olympus range. This range is located in the footwall of a system of normal faults traditionally interpreted as resulting from superposed Middle–Late Miocene N–S stretching, related to the back‐arc extension of the Hellenic subduction zone, and a Pliocene‐Quaternary transtensional field, attributed to the south‐westward propagation of the NAFZ. We find that accelerated exhumational cooling occurred between 12 and 6 Ma at rates of 15–35 °C Ma?1 and decreased to <3 °C Ma?1 by 8–6 Ma. The absence of significant Plio‐Pleistocene cooling across Olympus suggests that crustal exhumation there is driven by late Miocene back‐arc extension, while the impact of the NAFZ remains limited.  相似文献   
23.
The structure and vibrational spectrum of boehmite have been investigated at the quantum-mechanical level with the CRYSTAL code, using a Gaussian-type basis set and the B3LYP Hamiltonian. Three space groups are considered in this study: Cmcm, Cmc21, P21/c. Cmcm turns out to correspond to a transition state, whereas Cmc21 and P21/c are minimum energy structures. The difference among them is the position of H atoms only, the Al-O frame being essentially the same. Harmonic frequencies at the Γ point have been computed. The comparison between calculated and experimental frequencies shows a good agreement for the Al-O part of the spectrum (under 790 cm−1). For the Al-OH bending modes (800–1,300 cm−1) an absolute differences of 50–100 cm−1 is observed; for the OH stretching modes (3,200–3,500 cm−1) it increases to 120–200 cm−1: anharmonicity is large because OH groups are involved in strong hydrogen bonds.  相似文献   
24.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   
25.
Townsend's hypothesis states that turbulence near a wall can be divided into an activepart that transports momentum, and an inactive part that does not, and that these twokinds of turbulence do not interact. Active turbulence is generated by wind shear and has properties that scale on local parameters of the flow, while inactive turbulence isthe product of energetic processes remote from the surface and scales on outer-layerparameters. Both kinds of motion can be observed in the atmospheric surface layer, soMonin–Obukhov similarity theory, which is framed in terms of local parameters only,can apply only to active motions. If Townsend's hypothesis were wrong, so that activeand inactive motions do interact in some significant way, then transport processes nearthe ground would be sensitive to outer-layer parameters such as boundary-layer depth,and Monin–Obukhov theory would fail.Experimental results have shown that heat transport near the ground does depend onprocesses in the outer layer. We propose a mechanism for this whereby inactive motionsinitiate active, coherent ejection/sweep structures that carry much of the momentum andheat. We give evidence that the inactive motions take the form of streak patterns of fasterand slower air, and argue that these are induced by the pressure effects of large eddiespassing overhead. The streak pattern includes regions where faster streams of air overtakeand engulf slower-moving streaks. Transverse vortices form across the spines of the streaksat these places and some of them develop into horseshoe vortices. These horseshoe vorticesgrow rapidly and are rotated forward in the sheared flow so they soon contact the ground,squirting the air confined between the legs of the horseshoe vortex outwards as a forcefulejection. This model is consistent with a wide range of results from the field and laboratoryexperiments. Heat transport is significantly affected, so undermining the dimensionalassumptions of Monin–Obukhov similarity theory.  相似文献   
26.
Abstract

The lower St Lawrence Estuary is an interesting case amongst estuaries in that it is wide enough to accommodate the development of mesoscale unstable waves and eddies. These features are generated by the runoff‐driven jet along this body's south shore. We present data yielding estimates of the length, time and velocity scales of these unstable disturbances. To relate these quantities to the dynamics we employ a 2‐layer quasigeos‐trophic instability model featuring realistic lateral shear. All model runs show short time and length scales, e‐folding periods of less than 10 days and wavelengths less than 50 km.  相似文献   
27.
Airborne light detection and ranging (LiDAR) bathymetry appears to be a useful technology for bed topography mapping of non‐navigable areas, offering high data density and a high acquisition rate. However, few studies have focused on continental waters, in particular, on very shallow waters (<2 m) where it is difficult to extract the surface and bottom positions that are typically mixed in the green LiDAR signal. This paper proposes two new processing methods for depth extraction based on the use of different LiDAR signals [green, near‐infrared (NIR), Raman] of the SHOALS‐1000T sensor. They have been tested on a very shallow coastal area (Golfe du Morbihan, France) as an analogy to very shallow rivers. The first method is based on a combination of mathematical and heuristic methods using the green and the NIR LiDAR signals to cross validate the information delivered by each signal. The second method extracts water depths from the Raman signal using statistical methods such as principal components analysis (PCA) and classification and regression tree (CART) analysis. The obtained results are then compared to the reference depths, and the performances of the different methods, as well as their advantages/disadvantages are evaluated. The green/NIR method supplies 42% more points compared to the operator process, with an equivalent mean error (?4·2 cm verusu ?4·5 cm) and a smaller standard deviation (25·3 cm verusu 33·5 cm). The Raman processing method provides very scattered results (standard deviation of 40·3 cm) with the lowest mean error (?3·1 cm) and 40% more points. The minimum detectable depth is also improved by the two presented methods, being around 1 m for the green/NIR approach and 0·5 m for the statistical approach, compared to 1·5 m for the data processed by the operator. Despite its ability to measure other parameters like water temperature, the Raman method needed a large amount of reference data to provide reliable depth measurements, as opposed to the green/NIR method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
28.
29.
Evidence for a deuteric alteration process induced by a magmatic fluid has been found in the feeder zone of the Mururoa volcano (French Polynesia). Within the dikes, where basaltic glass does not show any evidence of pervasive alteration, vesicles are filled with dioctahedral smectites and calcite, while olivine phenocrysts are replaced by dioctahedral smectites, ankerite and calcite.The 13C signature of carbonates, the carbon and H2O content of the whole rocks and their impoverishment in deuterium are compatible with the presence of magmatic CO2 during the crystallization of intruding lavas and exclude contamination by seawater. Mass balance calculations on selected thin sections photographs of partly filled up vesicles and replaced olivine crystals, constrain, assuming a closed system interaction, the chemical composition of the initial fluid and the respective amounts of the initial solid phases involved in the alteration process. Thermodynamic modelings using the EQ3/6 software package correctly predict the mineralogic, chemical and isotopic exchanges accompanying alteration, thus validating the closed system assumption. The model which allows prediction of the influence of CO2 on the alteration products, shows that, above a 0.25 CO2 mole fraction in the initial fluid, the alteration is entirely controlled by the chemical composition of the initial solid phases. The presence of CO2 implies the precipitation of dioctahedral smectites and carbonates instead of the magnesian smectites commonly observed in CO2-free systems.The Mururoa feeder zone shows alteration features typical of a closed system interaction between the basaltic rock and a magmatic fluid in which seawater did not take part.  相似文献   
30.
Carbonates capping Neoproterozoic glacial deposits contain peculiar sedimentological features and geochemical anomalies ascribed to extraordinary environmental conditions in the snowball Earth aftermath. It is commonly assumed that post-snowball climate dominated by CO2 partial pressures several hundred times greater than modern levels, would be characterized by extreme temperatures, a vigorous hydrological cycle, and associated high continental weathering rates. However, the climate in the aftermath of a global glaciation has never been rigorously modelled. Here, we use a hierarchy of numerical models, from an atmospheric general circulation model to a mechanistic model describing continental weathering processes, to explore characteristics of the Earth system during the supergreenhouse climate following a snowball glaciation. These models suggest that the hydrological cycle intensifies only moderately in response to the elevated greenhouse. Indeed, constraints imposed by the surface energy budget sharply limit global mean evaporation once the temperature has warmed sufficiently that the evaporation approaches the total absorbed solar radiation. Even at 400 times the present day pressure of atmospheric CO2, continental runoff is only 1.2 times the modern runoff. Under these conditions and accounting for the grinding of the continental surface by the ice sheet during the snowball event, the simulated maximum discharge of dissolved elements from continental weathering into the ocean is approximately 10 times greater than the modern flux. Consequently, it takes millions of years for the silicate weathering cycle to reduce post-snowball CO2 levels to background Neoproterozoic levels. Regarding the origin of the cap dolostones, we show that continental weathering alone does not supply enough cations during the snowball melting phase to account for their observed volume.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号