首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17783篇
  免费   2204篇
  国内免费   3318篇
测绘学   1011篇
大气科学   2805篇
地球物理   3580篇
地质学   8733篇
海洋学   2422篇
天文学   1876篇
综合类   1159篇
自然地理   1719篇
  2024年   82篇
  2023年   261篇
  2022年   766篇
  2021年   1010篇
  2020年   884篇
  2019年   956篇
  2018年   1172篇
  2017年   1097篇
  2016年   1067篇
  2015年   838篇
  2014年   1037篇
  2013年   1151篇
  2012年   1107篇
  2011年   1191篇
  2010年   1049篇
  2009年   1007篇
  2008年   949篇
  2007年   978篇
  2006年   875篇
  2005年   465篇
  2004年   404篇
  2003年   447篇
  2002年   502篇
  2001年   470篇
  2000年   368篇
  1999年   391篇
  1998年   318篇
  1997年   329篇
  1996年   278篇
  1995年   277篇
  1994年   249篇
  1993年   198篇
  1992年   172篇
  1991年   115篇
  1990年   95篇
  1989年   116篇
  1988年   84篇
  1987年   68篇
  1986年   62篇
  1985年   45篇
  1984年   43篇
  1983年   41篇
  1982年   40篇
  1981年   27篇
  1980年   24篇
  1979年   29篇
  1977年   17篇
  1976年   17篇
  1975年   22篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
We present a detailed, new time scale for an orogenic cycle (oceanic accretion–subduction–collision) that provides significant insights into Paleozoic continental growth processes in the southeastern segment of the long-lived Central Asian Orogenic Belt (CAOB). The most prominent tectonic feature in Inner Mongolia is the association of paired orogens. A southern orogen forms a typical arc-trench complex, in which a supra-subduction zone ophiolite records successive phases during its life cycle: birth (ca. 497–477 Ma), when the ocean floor of the ophiolite was formed; (2) youth (ca. 473–470 Ma), characterized by mantle wedge magmatism; (3) shortly after maturity (ca. 461–450 Ma), high-Mg adakite and adakite were produced by slab melting and subsequent interaction of the melt with the mantle wedge; (4) death, caused by subduction of a ridge crest (ca. 451–434 Ma) and by ridge collision with the ophiolite (ca. 428–423 Ma). The evolution of the magmatic arc exhibits three major coherent phases: arc volcanism (ca. 488–444 Ma); adakite plutonism (ca. 448–438 Ma) and collision (ca. 419–415 Ma) of the arc with a passive continental margin. The northern orogen, a product of ridge-trench interaction, evolved progressively from coeval generation of near-trench plutons (ca. 498–461 Ma) and juvenile arc crust (ca. 484–469 Ma), to ridge subduction (ca. 440–434 Ma), microcontinent accretion (ca. 430–420 Ma), and finally to forearc formation. The paired orogens followed a consistent progression from ocean floor subduction/arc formation (ca. 500–438 Ma), ridge subduction (ca. 451–434 Ma) to microcontinent accretion/collision (ca. 430–415 Ma); ridge subduction records the turning point that transformed oceanic lithosphere into continental crust. The recognition of this orogenic cycle followed by Permian–early Triassic terminal collision of the CAOB provides compelling evidence for episodic continental growth.  相似文献   
42.
43.
The article describes heat exchange between basaltic and rhyolite melts accompanied by fractional crystallization of phases in a basaltic melt. A numerical model has been developed for the homogenization mechanism of magma composition during intrusion of basaltic magma batches into felsic magma chambers. The results of numerical modeling demonstrate that the time needed for cooling the basalts and their fractionation to rhyolite melts is much shorter than the time required for chemical interaction based on diffusive mechanisms.  相似文献   
44.
This paper discusses issues of the decline of the reservoir properties of arenaceous-argillaceous rocks as a result of declining porosity due to long-term operation of underground gas storage facilities. An analysis of the many-year operation of storage facilities, as well as calculation, has revealed that the active capacity of a storage reservoir gradually decreases under certain conditions of underground storage operations. We performed a series of experiments with model specimens in order to support the hypothesis of decreasing reservoir (capacity-filtration) properties because of changes in the value and structure of the pore space. These experiments showed that the cyclic loading and unloading of arenaceous-silty rocks during long-term operation of underground gas storage facilities can significantly decrease the reservoir parameters of reservoirs created within worked out gas-and-gas condensate fields. Laboratory studies of model specimens corresponding to feldspar sandstone in their composition, porosity, and strength proved that porosity considerably decreases in such reservoirs at actually existing values of formation pressure. Tests of sand performed under conditions close to those existing during the development of hydrocarbon fields also showed that their permeability gradually decreases in the process of cyclic changes of effective pressure.  相似文献   
45.
The joint evolution of organic matter and silica in petroliferous sequences is considered in the terms of the laws of transformation of dispersion systems. The dispersion systems are transformed under conditions of low-temperature solid-phase processes accompanied by the silica phase transition and dehydration that favors the evolution of organic matter.  相似文献   
46.
何淼  饶竹 《岩矿测试》2008,27(1):12-16
采用环境友好的圆盘固相萃取新技术富集水体中有机氯农药和有机磷农药,分别用微池电子捕获检测器(μECD)和火焰光度检测器(FPD)气相色谱法检测,实现了水中有机氯和有机磷农药残留物的测定。结果表明,16种有机氯农药的平均回收率为64.7%~102%,精密度(RSD,n=6)为2.9%~15%;13种有机磷农药的平均回收率为65.9%~104%,精密度(RSD,n=6)为1.7%~17%。方法快速、灵敏、低污染,可用于水体中多种有机氯农药和有机磷农药的残留分析。  相似文献   
47.
Occurrence and evolution of the Xiaotangshan hot spring in Beijing, China   总被引:1,自引:0,他引:1  
Thermal groundwater occurs in bedrock aquifers consisting of the dolomite of the Wumishan Group of the Jixianin System and the Cambrian carbonate in the Xiaotangshan geothermal field near the northern margin of the North China Plain, China. The hot water in the geothermal field of basin-type discharges partly in the form of the Xiaotangshan hot spring under natural conditions. The hot water has TDS of less than 600 mg/L and is of Na·Ca-HCO3 type. The geothermal water receives recharge from precipitation in the mountain area with elevation of about 500 m above sea level to the north of the spring. Thermal groundwater flows slowly south and southeast through a deep circulation with a residence time of 224 years estimated with the Ra–Rn method. The Xiaotangshan hot spring dried up in the middle of the 1980s owing to the increasing withdrawal of the hot water in the geothermal field in the past decades. The water level of the geothermal system still falls continually at an annual average rate of about 2 m, although water temperature changes very little, indicating that the recharge of such a geothermal system of basin-type is limited. Over-exploitation has a dramatic impact on the geothermal system, and reduction in exploitation and reinjection are required for the sustainable usage of the hot water.  相似文献   
48.
Many cities around the world are developed at alluvial fans. With economic and industrial development and increase in population, quality and quantity of groundwater are often damaged by over-exploitation in these areas. In order to realistically assess these groundwater resources and their sustainability, it is vital to understand the recharge sources and hydrogeochemical evolution of groundwater in alluvial fans. In March 2006, groundwater and surface water were sampled for major element analysis and stable isotope (oxygen-18 and deuterium) compositions in Xinxiang, which is located at a complex alluvial fan system composed of a mountainous area, Taihang Mt. alluvial fan and Yellow River alluvial fan. In the Taihang mountainous area, the groundwater was recharged by precipitation and was characterized by Ca–HCO3 type water with depleted δ18O and δD (mean value of −8.8‰ δ18O). Along the flow path from the mountainous area to Taihang Mt. alluvial fan, the groundwater became geochemically complex (Ca–Na–Mg–HCO3–Cl–SO4 type), and heavier δ18O and δD were observed (around −8‰ δ18O). Before the surface water with mean δ18O of −8.7‰ recharged to groundwater, it underwent isotopic enrichment in Taihang Mt. alluvial fan. Chemical mixture and ion exchange are expected to be responsible for the chemical evolution of groundwater in Yellow River alluvial fan. Transferred water from the Yellow River is the main source of the groundwater in the Yellow River alluvial fan in the south of the study area, and stable isotopic compositions of the groundwater (mean value of −8.8‰ δ18O) were similar to those of transferred water (−8.9‰), increasing from the southern boundary of the study area to the distal end of the fan. The groundwater underwent chemical evolution from Ca–HCO3, Na–HCO3, to Na–SO4. A conceptual model, integrating stiff diagrams, is used to describe the spatial variation of recharge sources, chemical evolution, and groundwater flow paths in the complex alluvial fan aquifer system.  相似文献   
49.
The Qinghai–Tibet Highway and Railway (the Corridor) across the Qinghai–Tibet Plateau traverses 670 km of permafrost and seasonally frozen-ground in the interior of the Plateau, which is sensitive to climatic and anthropogenic environmental changes. The frozen-ground conditions for engineering geology along the Corridor is complicated by the variability in the near-surface lithology, and the mosaic presence of warm permafrost and talik in a periglacial environment. Differential settlement is the major frost-effect problem encountered over permafrost areas. The traditional classification of frozen ground based on the areal distribution of permafrost is too generalized for engineering purposes and a more refined classification is necessary for engineering design and construction. A proposed classification of 51 zones, sub-zones, and sections of frozen ground has been widely adopted for the design and construction of foundations in the portion of the Corridor studied. The mean annual ground temperature (MAGT), near-surface soil types and moisture content, and active faults and topography are most commonly the primary controlling factors in this classification. However, other factors, such as local microreliefs, drainage conditions, and snow and vegetation covers also exert important influences on the features of frozen ground. About 60% of the total length of the Corridor studied possesses reasonably good frozen-ground conditions, which do not need special mitigative measures for frost hazards. However, other sections, such as warm and ice-rich or -saturated permafrost, particularly in the sections in wetlands, ground improvement measures such as elevated land bridges and passive or proactive cooling techniques need to be applied to ensure the long-term stability of thermally unstable, thick permafrost subsoils, and/or refill with non-frost-susceptible soils. Due to the long-history of the construction and management of the Corridor by various government departments, adverse impacts of construction and operation on the permafrost environment have been resulted. It is recommended that an integrated, executable plan for the routing of major construction projects within this transportation corridor be established and long-term monitoring networks installed for evaluating and mitigating the impact from anthropogenic and climatic changes in frozen-ground conditions.  相似文献   
50.
Experiments at 6.0–7.1 GPa and 1500–1700°C were carried out to explore the boundary conditions of diamond nucleation and growth in pyrrhotite-carbon melt-solutions. Pyrrhotite is one of the main sulfide minerals of the pyrrhotite-pentlandite-chalcopyrite assemblage of mantle rocks and primary inclusions in diamond. Solutions of carbon in sulfide melts oversaturated with respect to diamond at the expense of the dissolution of starting graphite (thermodynamically unstable phase) are formed owing to the difference between the solubilities of graphite and diamond, which increases under the influence of temperature gradients in experimental samples. We determined the fields of carbon solutions in pyrrhotite melt showing labile and metastable oversaturation with respect to diamond, which correspond to the spontaneous nucleation of the diamond phase and diamond growth on seeds, respectively. The linear growth rate of diamond in sulfide-carbon melts is rather high (on average, 10 μ/min during the first 1–2 min from the onset of spontaneous crystallization). The nucleation density is estimated as 180 grains per cubic centimeter. Diamonds crystallized from sulfide melts show octahedral and spinel twin shapes. Diamond polycrystals were synthesized for the first time from a sulfide medium as intergrowths of skeletal (edge) or “cryptocrystalline” microdiamonds, from 1 to 100 μm in size, their spinel twins and, occasionally, polysynthetic (star-shaped) twins. During diamond growth from sulfidecarbon melts on smooth faces of cuboctahedral diamond seeds synthesized in metal systems, smooth-faced layer-by-layer step-like growth was observed on their octahedral (111) faces, whereas growth on the (100) cubic faces produced rough-surfaced layers of intergrown micropyramids, whose axes were oriented normal to the (100) face. The obtained experimental results were applied to the problem of diamond genesis under the conditions of the Earth’s mantle in the framework of the model of carbonate-silicate parental melts with blebs of immiscible sulfide melts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号