首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   11篇
  国内免费   3篇
测绘学   5篇
大气科学   18篇
地球物理   110篇
地质学   103篇
海洋学   77篇
天文学   112篇
综合类   2篇
自然地理   16篇
  2021年   5篇
  2020年   6篇
  2019年   12篇
  2018年   2篇
  2017年   12篇
  2016年   7篇
  2015年   8篇
  2014年   23篇
  2013年   14篇
  2012年   15篇
  2011年   17篇
  2010年   23篇
  2009年   24篇
  2008年   24篇
  2007年   18篇
  2006年   26篇
  2005年   14篇
  2004年   14篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   9篇
  1998年   10篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1977年   6篇
  1975年   2篇
  1974年   4篇
  1973年   5篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1966年   1篇
  1963年   1篇
排序方式: 共有443条查询结果,搜索用时 15 毫秒
441.
The paper presents new data on the isotopic age and chemical composition of volcanic rocks from the Tytyl’veem and Mangazeika basins of western Chukotka superposed on Mesozoides of the Verkhoyansk–Chukotka Tectonic Region. The results of SIMS U–Pb zircon dating (121.4 ± 2.8 and 118.0 ± 2.0 Ma) corroborate the Aptian age of the Tytyl’veem Formation. This age, in turn, indicates its formation after closure of the South Anyui ocean (Neocomian), but before origination of the Okhotsk–Chukotka Belt (Albian–Campanian). Post-collisional Aptian igneous rocks are widespread in the northern Verkhoyansk–Chukotka Tectonic Region; the legth of the corresponding igneous province is no less than 1400 km. In geochemical characteristics, the post-collisional volcanic rocks occurring in Western Chukotka are similar with the rocks from Andean-type igneous belts.  相似文献   
442.
The formation mechanism of the nocturnal urban boundary layer (UBL), especially in the winter nighttime, was investigated based on the extensive field observations conducted during November 1984 in Sapporo, Japan. A strong, elevated inversion formed over the Sapporo urban area and the inversion base height was approximately twice the average building height. Velocity fluctuations u, w and Reynolds stress % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] had nearly uniform profiles within the nocturnal UBL and decreased with height above the UBL. On the other hand, temperature fluctuations t , and heat fluxes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG3bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B58!\[\overline {w^1 \theta ^1 } \] had peaks at the inversion base and small values within the nocturnal UBL. The turbulent kinetic energy budget showed that the turbulent transport term and shear generation from urban canopy elements are important in the nocturnal UBL development; the role of the buoyancy term is small. The turbulence data analysis and application of a simple advective model showed that the mechanism of UBL formation may be controlled by the downward transport of sensible heat from the elevated inversion caused by mechanically-generated turbulence.Nomenclature g accelaration due to gravity, m s-2 - k turbulent kinetic energy, m2 s-1 - K m eddy viscosity, m2 s-1 - L Monin-Obukhov lenght, m - p pressure, Kg m-2 - U, V, W mean wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - u 1, w 1 wind speed fluctuation in the downwind and vertical direction, respectively, m s-1 - u 1 friction velocity, m s-1 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 w^1 } \] momentum flux, m2s-2 - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaam4DamaaCaaa% leqabaGaaGymaaaaaaaaaa!3A9C!\[\overline {u^1 \theta^1 } \] sensible heat flux, m2s-1°C - WD wind direction, deg - WS wind speed, m s-1 - z altitude, m - Z h inversion base height, m - Z j wind maximum height, m - Z t inversion top height, m - T u-r heat island intensity, °C - temperature lapse rate at rural site, °C m-1 - energy dissipation rate, m2s-3 - 1 Potential temperature fluctuation, °C - * scaling temperature, (=-% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% WG1bWaaWbaaSqabeaacaaIXaaaaGGaaOGae8hiaaIaeqiUde3aaWba% aSqabeaacaaIXaaaaaaaaaa!3B56!\[\overline {u^1 \theta ^1 } \]/u*) °C - mean potential temperature fluctuation, K - density of air, Kgm-3 - K von Kármán constant (=0.4) - u, v, w standard deviation of wind speed in the downwind, crosswind, and vertical directions, respectively, m s-1 - standard diviation of temperature, °C  相似文献   
443.
Abstract. The presence of invisible gold was confirmed in arsenian pyrite from the Hishikari epithermal gold deposit, Kagoshima, Japan, by means of EPMA and SIMS analyses. The relative concentration of invisible gold may be positively correlated with As contents (0.01 to 10.37 wt%) of fine-grained arsenian pyrite which commonly occurs in the auriferous quartz veins. Although arsenian pyrite occurs widely in any mineralization stage with electrum and other sulfide, sulfosalts, selenide or telluride minerals, arsenian pyrites having higher As contents accompanied by invisible gold occur dominantly in the middle stage of fine-adularia-quartz and in the late stage of coarse-quartz rather than in the early stage of columnar-adularia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号